
Solutions to CLRS, Third Edition
Author: Daniel Bastos Moraes

Table of Contents

1 The Role of Algorithms in Computing 3
1.1 Algorithms . 3
1.2 Algorithms as a technology . 4

Problems . 5

2 Getting Started 6
2.1 Insertion sort . 6
2.2 Analyzing algorithms . 8
2.3 Designing algorithms . 9

Problems . 11

3 Growth of Functions 15
3.1 Asymptotic notation . 15
3.2 Standard notations and common functions . 18

Problems . 21

4 Divide-and-Conquer 22
4.1 The maximum-subarray problem . 22
4.2 Strassen’s algorithm for matrix multiplication . 24
4.3 The substitution method for solving recurrences . 27
4.4 The recursion-tree method for solving recurrences . 31
4.5 The master method for solving recurrences . 41

Problems . 43

5 Probabilistic Analysis and Randomized Algorithms 53
5.1 The hiring problem . 53
5.2 Indicator random variables . 54
5.3 Randomized algorithms . 56

Problems . 60

6 Heapsort 63
6.1 Heaps . 63
6.2 Maintaining the heap property . 64
6.3 Building a heap . 66
6.4 The heapsort algorithm . 67
6.5 Priority queues . 69

Problems . 72

7 Quicksort 76
7.1 Description of quicksort . 76
7.2 Performance of quicksort . 78
7.3 A randomized version of quicksort . 80
7.4 Analysis of quicksort . 81

Problems . 84

8 Sorting in Linear Time 94
8.1 Lower bounds for sorting . 94
8.2 Counting sort . 96
8.3 Radix sort . 97
8.4 Bucket sort . 99

Problems . 103

9 Medians and Order Statistics 113
9.1 Minimum and maximum . 113
9.2 Selection in worst-case linear time . 114
9.3 Selection in worst-case linear time . 115

Problems . 120

10 Elementary Data Structures 125
10.1 Stacks and queues . 125

A Summations 126
A.1 Summation formulas and properties . 126
A.2 Bounding summations . 129

Problems . 131

B Sets, Etc. 132
B.1 Sets . 132
B.2 Relations . 134
B.3 Functions . 135

C Counting and Probability 136
C.1 Counting . 136
C.2 Probability . 142
C.3 Discrete random variables . 145

CLRS – Chapter 1 – The Role of Algorithms in Computing Daniel Bastos Moraes

The Role of Algorithms in Computing

1.1 Algorithms

1.1-1 Give a real-world example that requires sorting or a real-world example that requires computing a convex hull.

Sorting. In a dictionary, it is essential to use sorting so that one can easily find the desired word.

Convex hull. After conducting a voting intention survey, it may be interesting to know its coverage area. One can calculate
the aproximate area by projecting the covered cities to a two dimensional plane, obtain the convex hull of the projected
cities, and then compute the approximate area of the convex hull.

1.1-2 Other than speed, what other measures of efficiency might one use in a real-world setting?

For algorithms in general, we can also optimize for low memory usage or low power consumption. In machine learning
algorithms, accuracy (hit rate) is also considered a measure of efficiency.

1.1-3 Select a data structure that you have seen previously, and discuss its strengths and limitations.

Linked List is a basic data structure. Some of its strengths are:

• Given a pointer to an element in the list, we can insert an element after or before it in constant time.

• Given a pointer to an element in the list, we can delete it in constant time.

Some of its limitations are:

• The pointers requires extra memory.

• Since it only has pointers to the next element, it takes linear time to retrieve the i-th element.

1.1-4 How are the shortest-path and traveling-salesman problems given above similar? How are they different?

They are similar because both of them aims at minimizing the distance between A and B, given a set of possible valid paths.
However, the traveling-salesman problem has an additional constraint: for a path to be valid, besides starting in A and
ending in B, it also needs to pass through a set of other points C, D, . . . , E before reaching B.

1.1-5 Come up with a real-world problem in which only the best solution will do. Then come up with one in which a solution that is
“approximately” the best is good enough.

In a competition, each candidate received a score for her/his performance. To obtain the ranking list of the candidates, only
the best sorting solution is accepted. Approximated sorting algorithms are not feasible in this situation.

Recently, Facebook computed the approximate degree of separation between every two people in the world. Since Facebook
has billion of users, it would take too long to compute the solution that takes into account all the connections between all
the users. Also, an approximate result is very feasible in this case. They then used an approximate to get the result of 3.57.

3

CLRS – Chapter 1 – The Role of Algorithms in Computing Daniel Bastos Moraes

1.2 Algorithms as a technology

1.2-1 Give an example of an application that requires algorithmic content at the application level, and discuss the function of the
algorithms involved.

The search engines we have today involves a lot of complex algorithms to work. It needs a ranking algorithm to sort the
search results appropriately. It is also important to use a crawler that systematically browses and indexes the web content.
During searching, this indexed content is gathered and filtered from the database using sophisticated algorithms.

1.2-2 Suppose we are comparing implementations of insertion sort and merge sort on the same machine. For inputs of size n, insertion
sort runs in 8n2 steps, while merge sort runs in 64n lgn steps. For which values of n does insertion sort beat merge sort?

For input values less than or equal to 43, insertion sort beats merge sort. We can ignore the case where n = 1, since a single
element is already sorted by definition.

1.2-3 What is the smallest value of n such that an algorithm whose running time is 100n2 runs faster than an algorithm whose running
time is 2n on the same machine?

The smallest value of n is 15.

4

CLRS – Chapter 1 – The Role of Algorithms in Computing Daniel Bastos Moraes

Problems

1-1 Comparison of running times. For each function f(n) and time t in the following table, determine the largest size n of a problem
that can be solved in time t, assuming that the algorithm to solve the problem takes f(n) microseconds.

f(n)
1 1 1 1 1 1 1

second minute hour day month year century

lgn 210
6

210
7×6 210

8×36 210
8×864 210

9×2592 210
9×31536 210

11×31536
√
n 1012 1014 × 36 1016 × 1296 1016 × 746496 1018 × 6718264 1018 × 994519296 1022 × 994519296
n 106 107 × 6 108 × 36 108 × 864 109 × 2592 109 × 31536 1011 × 31536

n lgn 62746 2801418 133378059 2755147513 71870856404 797633893349 68610956750570
n2 103 7745 104 × 6 293938 1609968 5615692 561569229
n3 102 391 1532 4420 13736 31593 146645
2n 9 25 31 36 41 44 51
n! 9 11 12 13 15 16 17

5

CLRS – Chapter 2 – Getting Started Daniel Bastos Moraes

Getting Started

2.1 Insertion sort

2.1-1 Using Figure 2.2 as a model, illustrate the operation of Insertion-Sort on the array A = 〈31, 41, 59, 26, 41, 58〉.

(a) 31 41 59 26 41 58

(b) 31 41 59 26 41 58

(c) 31 41 59 26 41 58

(d) 26 31 41 59 41 58

(e) 26 31 41 41 59 58

(f) 26 31 41 41 58 59

2.1-2 Rewrite the Insertion-Sort procedure to sort into non-increasing instead of non-decreasing order.

The pseudocode is stated below.

1 InsertionSortNonIncreasing(A)
33 for j = 2 to A.length do
55 key = A[j]
77 i = j − 1
99 while i > 0 and A[i] > key do

1111 A[i+ 1] = A[i]
1313 i = i− 1

1515 A[i+ 1] = key

2.1-3 Consider the searching problem :

Input: A sequence of n numbers A = 〈a1, a2, . . . , an〉 and a value ν.
Output: An index i such that ν = A[i] or the special value NIL if ν does not appear in A.

Write pseudocode for linear search, which scans through the sequence, looking for ν. Using a loop invariant, prove that your
algorithm is correct. Make sure that your loop invariant fulfills the three necessary properties.

The pseudocode is stated below.

1 LinearSearch(A, ν)
33 for i = 1 to A.length do
55 if A[i] == ν then
77 return i

99 return NIL

Here is the loop invariant. At the start of each iteration of the for loop of lines 1–3, the algorithm assures that the subarray
A[1, . . . , i − i] does not contain the element ν. Within each iteration, if A[i] corresponds to the ν element, its index is
returned.

• Initialization. Before the for loop, i = 1 and A[1, . . . , i− 1] constains no element (therefore does not contain ν).

• Maintenance. The body of the for loop verifies if A[i] corresponds to the ν element. If the element correspond to ν,
its index is returned. Otherwise, incrementing i for the next iteration of the for loop then preserves the loop invariant.

• Termination. The for loop can terminate in one of the following conditions: (1) A[i] = ν, which means that ν was
found and its index is returned; (2) i > A.length and, since each loop iteration increases i by 1, at that time we have
i = A.length+ 1 which assures (from the previous property) that A[1, . . . , A.length] does not contain the element ν.

6

CLRS – Chapter 2 – Getting Started Daniel Bastos Moraes

2.1-4 Consider the problem of adding two n-bit binary integers, stored in two n-element arrays A and B. The sum of the two integers
should be stored in binary form in an (n+ 1)-element array C. State the problem formally and write pseudocode for adding the
two integers.

The pseudocode is stated below. Integers are stored in little endian format.

1 AddIntegers(A, B)
33 let C[1, . . . , n+ 1] be a new array
55 C[1] = 0
77 for i = 1 to A.length do
99 s = A[i] +B[i] + C[i]

1111 C[i] = s mod 2
1313 C[i+ 1] = s / 2

1515 return C

7

CLRS – Chapter 2 – Getting Started Daniel Bastos Moraes

2.2 Analyzing algorithms

2.2-1 Express the function n3/1000− 100n2 − 100n+ 3 in terms of Θ-notation.

Θ(n3).

2.2-2 Consider sorting n numbers stored in array A by first finding the smallest element of A and exchanging it with the element in
A[1]. Then find the second smallest element of A, and exchange it with A[2]. Continue in this manner for the first n−1 elements
of A. Write pseudocode for this algorithm, which is known as selection sort . What loop invariant does this algorithm maintain?
Why does it need to run for only the first n − 1 elements, rather than for all n elements? Give the best-case and worst-case
running times of selection sort in Θ-notation.

The pseudocode is stated below.

1 SelectionSort(A)
33 for i = 1 to A.length− 1 do
55 smallest = i
77 for j = i+ 1 to A.length do
99 if A[j] < A[smallest] then

1111 smallest = j

1313 tmp = A[i]
1515 A[i] = A[smallest]
1717 A[smallest] = tmp

Here is the loop invariant. At the start of each iteration of the for loop of lines 1–8, the subarray A[1, . . . , i− i] consists of
the (i− 1) smallest elements of the array A in sorted order.

• Initialization. Before the for loop, i = 1 and A[1, . . . , i− 1] constains no element.

• Maintenance. The body of the for loop looks on the subarray A[i + 1, . . . , A.length] for a element that is smaller
than A[i]. If a smaller element is found, their positions in A are exchanged. Since the subarray A[1, . . . , i− 1] already
contains the i smallest elements of A, the smaller element between A[i] and A[i+ 1, . . . , A.length] is the i-th smallest
element of A, which maintains our loop invariant for the subarray [1, . . . , i].

• Termination. The condition causing the for loop to terminate is that i == A.length−1. At that time, i = A.length =
n. Since (from the previous property) the subarray A[1, . . . , n−1] consists of the (n−1) smaller elements A, the lasting
element A[n] can only be the n-th smaller element.

It needs to run only for the first (n − 1) element because, after that, the subarray A[1, . . . , n − 1] consists of the (n − 1)
smaller elements of A and the n-th element is already in the correct position.

Regardless of the content of the input array A, for i = 1, 2, . . . , (A.length − 1) the algorithm will always look for the i-th
element in the whole subarray A = [i+ 1, A.length]. Thus, the algorithm takes Θ(n2) for every input.

2.2-3 Consider linear search again (see Exercise 2.1-3). How many elements of the input sequence need to be checked on the average,
assuming that the element being searched for is equally likely to be any element in the array? How about in the worst case?
What are the average-case and worst-case running times of linear search in Θ-notation? Justify your answers.

Lets consider an array of size n, where each element is taken from the set 1, . . . , k. If k is not a function of n, its a constant.
In the average case, each comparison has probability 1/k to find the element that is being searched, resulting in an average
of k comparisons. Thus, in the average case, as a function of the input size, the algorithm takes Θ(k) = Θ(1). The worst
case occurs when k >= n, which takes Θ(n).

2.2-4 How can we modify almost any algorithm to have a good best-case running time?

Verify if the input is already solved. If it is solved, do nothing. Otherwise, solve it with some algorithm.

8

CLRS – Chapter 2 – Getting Started Daniel Bastos Moraes

2.3 Designing algorithms

2.3-1 Using Figure 2.4 as a model, illustrate the operation of merge sort on the array A = 〈3, 41, 52, 26, 38, 57, 9, 49〉

3 9 26 38 41 49 52 57

3 26 41 52 9 38 49 57

3 41 26 52 38 57 9 49

3 41 52 26 38 57 9 49

2.3-2 Rewrite the Merge procedure so that it does not use sentinels, instead stopping once either array L or R has had all its elements
copied back to A and then copying the remainder of the other array back into A.

The pseudocode is stated below.

1 Merge(A, p, q, r)
33 n1 = q − p+ 1
55 n2 = r − q
77 let L[1, . . . , n1] and R[1, . . . , n2] be new arrays
99 for i = 1 to n1 do

1111 L[i] = A[p+ i− 1]

1313 for j = 1 to n2 do
1515 R[j] = A[q + j]

1717 i = 1
1919 j = 1
2121 for k = p to r do
2323 if q + j > r or L[i] ≤ R[j] then
2525 A[k] = L[i]
2727 i = i+ 1

2929 else
3131 A[k] = R[j]
3333 j = j + 1

2.3-3 Use mathematical induction to show that when n is an exact power of 2, the solution of the recurrence

T (n) =

{
2 if n = 2,

2T (n/2) + n if n = 2k, for k > 1

is T (n) = n lgn.

The base case is trivial, since T (2) = 2 lg 2 = 2. To prove that it holds for n > 2 using mathematical induction, we need to
show that if it holds for n− 1, it also holds for n. From the recurrence, T (n) = 2T (n/2) + n. But by inductive hypothesis,
T (n/2) = (n/2) lg(n/2), so we get that:

T (n) = 2T (n/2) + n

= 2(n/2) lg(n/2) + n

= n lg(n/2) + n

= n(lg(n)− lg(2)) + n

= n lg(n)− n+ n

= n lg(n).

2.3-4 We can express insertion sort as a recursive procedure as follows. In order to sort A[1, . . . , n], we recursively sort A[1, . . . , n− 1]
and then insert A[n] into the sorted array A[1, . . . , n − 1]. Write a recurrence for the worst-case running time of this recursive
version of insertion sort.

9

CLRS – Chapter 2 – Getting Started Daniel Bastos Moraes

The recurrence is stated below.

T (n) =

{
Θ(1) if n = 1,

T (n− 1) + Θ(n) if n > 1.

It takes Θ(n2).

2.3-5 Referring back to the searching problem (see Exercise 2.1-3), observe that if the sequence A is sorted, we can check the midpoint of
the sequence against ν and eliminate half of the sequence from further consideration. The binary search algorithm repeats this
procedure, halving the size of the remaining portion of the sequence each time. Write pseudocode, either iterative or recursive,
for binary search. Argue that the worst-case running time of binary search is Θ(lg n).

The pseudocode is stated below.

1 BinarySearch(A, s, e, ν)
33 if s > e then
55 return NIL

77 m = b(s+ e)/2c
99 if ν > A[m] then

1111 BinarySearch(A, m+ 1, e, ν)

1313 else if ν > A[m] then
1515 BinarySearch(A, s, m− 1, ν)

1717 else
1919 return m

In each recursion level, the algorithm compares ν with the central element A[m]. If ν = A[m], the element was found and
it just returns the position. If A[m] is bigger (or smaller) than ν, the algorithm discards the left half (or the right half) of
the array and continues recursively in the remaining b(n− 1)/2c elements. Each recursion element compares ν with a single
element of A, thus each level takes Θ(1). Since the number of elements in the array is halved in each level, there will be at
most lg n recursion levels. The algorithm then takes at most lgn×Θ(1) = Θ(lgn).

2.3-6 Observe that the while loop of lines 5–7 of the Insertion-Sort procedure in Section 2.1 uses a linear search to scan (backward)
through the sorted subarray A[1, . . . , j − 1]. Can we use a binary search (see Exercise 2.3-5) instead to improve the overall
worst-case running time of insertion sort to Θ(n lgn)?

No, because even finding the correct position in lgn, after each search the algorithm will still need to shift up to n the
elements to keep the subarray A[1, . . . , j] sorted. The worst-case running time will remain Θ(n2).

2.3-7 (?) Describe a Θ(n lgn)-time algorithm that, given a set S of n integers and another integer x, determines whether or not there
exist two elements in S whose sum is exactly x.

Start by sorting S using MergeSort, which takes Θ(n lgn). For each element i of S, i = 1, . . . , n, search the subarray
A[i + 1, . . . , n] for the element ν = x − S[i] using BinarySearch. If ν is found, return its position. Otherwise, continue
for the next value of i. It will perform at most n searchs and each search takes Θ(lgn). The algorithm then takes
Θ(n lgn) + n×Θ(lgn) = Θ(n lgn).

10

CLRS – Chapter 2 – Getting Started Daniel Bastos Moraes

Problems

2-1 Insertion sort on small arrays in merge sort
Although merge sort runs in Θ(n lgn) worst-case time and insertion sort runs in Θ(n2) worst-case time, the constant factors
in insertion sort can make it faster in practice for small problem sizes on many machines. Thus, it makes sense to coarsen
the leaves of the recursion by using insertion sort within merge sort when subproblems become sufficiently small. Consider a
modification to merge sort in which n/k sublists of length k are sorted using insertion sort and then merged using the standard
merging mechanism, where k is a value to be determined.

a. Show that insertion sort can sort the n/k sublists, each of length k, in Θ(nk) worst-case time.

b. Show how to merge the sublists in Θ(n lg(n/k)) worst-case time.

c. Given that the modified algorithm runs in Θ(nk + n lg(n/k)) worst-case time, what is the largest value of k as a function
of n for which the modified algorithm has the same running time as standard merge sort, in terms of Θ-notation?

d. How should we choose k in practice?

(a) Sort n/k sublists of length k with insertion sort takes n/k ·Θ(k2) = Θ(n/k · k2) = Θ(nk).

(b) The naive solution is to extend the standard merging procedure to merge n/k sublists at the same time, instead of
two. Since there is n/k sublists, in each iteration the algorithm takes Θ(n/k) to select the lowest element among all
the sublists. Since there are n elements (thus n iterations), the total complexity is n ·Θ(n/k) = Θ(n2/k).

We can accomplish the requested Θ(n lg(n/k)) complexity by merging the sublists pairwise, rather than merging them
all at the same time. Lets first consider the case in which the number of sublists is even. In the first level there will be
n/(2k) pairs of sublists to merge and, since each sublist has length k, each merge will take Θ(2k). Thus, the first level
will take n/(2k)·Θ(2k) = Θ(n). The next level will have half the number of sublists and will take n/(4k)·Θ(4k) = Θ(n).
Since the number of sublists is reduced by two on each level, the total number of levels will be lg(n/k). Thus, the total
cost is Θ(n) · lg(n/k) = Θ(n lg(n/k)). When the number of sublists is odd, it will need one additional level to merge
the remaining sublist. Thus, the total cost is Θ(n lg(dn/ke)).

(c) When k = 1 (smallest possible value for k), the modified algorithm takes Θ(n · 1 + n lg(n/1)) = Θ(n+ n lgn). When k
grows, the first term grows and the second term decreases. Thus, since the second term can not be greater than n lgn, we
just need to pay attention to the first term. The algorithm then takes more than Θ(n lgn) when nk > n lgn→ k > lgn.
Thus, the largest value of k is lgn.

(d) It depends of the constant factors of insertion sort and merge sort. Since the cost of these constants may vary between
different machines, in practice one should choose the largest value of k in which insertion sort is faster then merge sort
in a given machine.

2-2 Correctness of bubblesort
Bubblesort is a popular, but inefficient, sorting algorithm. It works by repeatedly swapping adjacent elements that are out of
order.

1 BubbleSort(A)
33 for i = 1 to A.length− 1 do
55 for j = A.length downto i+ 1 do
77 if A[j] < A[j − 1] then
99 exchange A[j] with A[j − 1]

a. Let A′ denote the output of BubbleSort(A). To prove that BubbleSort is correct, we need to prove that it terminates
and that

A′[1] ≤ A′[2] ≤ · · · ≤ A′[n].

where n = A.length. In order to show that BubbleSort actually sorts, what else do we need to prove?

b. State precisely a loop invariant for the for loop in lines 2–4, and prove that this loop invariant holds. Your proof should
use the structure of the loop invariant proof presented in this chapter.

c. Using the termination condition of the loop invariant proved in part (b), state a loop invariant for the for loop in lines 1–4
that will allow you to prove in- equality (2.3). Your proof should use the structure of the loop invariant proof presented in
this chapter.

d. What is the worst-case running time of bubblesort? How does it compare to the running time of insertion sort?

11

CLRS – Chapter 2 – Getting Started Daniel Bastos Moraes

(a) A′ must be a permutation of A.

(b) Here is the loop invariant. At the start of each iteration j of the for loop of lines 2–4, A[j] is the smallest element of
the subarray A[j, . . . , A.length].

• Initialization. Prior to the first iteration of the loop, j = n = A.length, so the subarray A[j, . . . , A.length] has
only one element, and A[j] is therefore the smallest element of the subarray A[j, . . . , A.length].

• Maintenance. To see that each iteration maintains the loop invariant, let’s suppose that A[j−1] > A[j]. Because
A[j] is the smallest element of the subarray A[j, . . . , A.length], after line 4 exchanges the position of the elements
A[j] and A[j − 1], A[j − 1] will be the smallest element of the subarray A[j − 1, . . . , A.length]. Incrementing j
(in the for loop update) reestablishes the loop invariant for the next iteration. If instead A[j − 1] < A[j], nothing
needs to be done and A[j − 1] is already the smallest element of the subarray A[j − 1, . . . , A.length].

• Termination. At termination, j = i. By the loop invariant A[i] is the smallest element of the subarray
A[i, . . . , A.length].

(c) Here is the loop invariant. At the start of each iteration i of the for loop of lines 1–4, the subarray A[1, . . . , i − 1]
consists of the i smallest elements of A in sorted order.

• Initialization. Prior to the first iteration of the loop, we have i = 1, so that the subarray A[1, . . . , i− 1] is empty.
This empty subarray contains the i− 1 = 0 smallest elements of A in sorted order.

• Maintenance. In each iteration i, the subarray A[1, . . . , i−1] constains the i−1 smallest elements of A in sorted
order. After the for loop of lines 2–4, A[i] will be the smallest element of the subarray A[i, . . . , A.length] and thus
the i-th smallest element of A. This implies that A[1, . . . , i] will contain the i smallest elements of A in sorted
order. Incrementing i (in the for loop update) reestablishes the loop invariant for the next iteration.

• Termination. At termination, i = A.length. By the loop invariant the subarray A[1, . . . , A.length − 1] consists
of the smallest elements of A in sorted order. Since A[A.length] can only be the largest element of A, it is already
in its correct position and the subarray A[1, . . . , A.length] consists of the elements of A in sorted order.

(d) The worst running time of Bubble-Sort is Θ(n2), which is the same of Insertion-Sort. However, the best running
time of Insertion-Sort is Θ(n) (when the array is already sorted) and Bubble-Sort runs always in Θ(n2).

2-3 Correctness of Horner’s rule
The following code fragment implements Horner’s rule for evaluating a polynomial

P (x) =

n∑
k=0

akx
k

= a0 + x(a1 + x(a2 + · · ·+ x(an−1 + xan) · · ·)),

given the coefficients a0, a1, . . . , an and a value for x:

22 y = 0
44 for i = n downto 0 do
66 y = ai + x · y

a. In terms of Θ-notation, what is the running time of this code fragment for Horner’s rule?

b. Write pseudocode to implement the naive polynomial-evaluation algorithm that computes each term of the polynomial from
scratch. What is the running time of this algorithm? How does it compare to Horner’s rule?

c. Consider the following loop invariant:

At the start of each iteration of the for loop of lines 2–3,

y =

n−(i+1)∑
k=0

ak+i+1x
k.

Interpret a summation with no terms as equaling 0. Following the structure of the loop invariant proof presented in this
chapter, use this loop invariant to show that, at termination, y =

∑n
k=0 akx

k.

d. Conclude by arguing that the given code fragment correctly evaluates a polynomial characterized by the coefficients
a0, a1, . . . , an.

12

CLRS – Chapter 2 – Getting Started Daniel Bastos Moraes

(a) Since the body of the for loop of lines 2–3 consists of constant operations, the running time depends on the number of
iterations of the loop. The running time is then

∑n
i=0 1 = n+ 1 = Θ(n).

(b) Here is the pseudocode of the NaivePolynomialEvaluation algorithm:

22 y = 0
44 for i = 0 to n do
66 yi = ai
88 for k = 1 to i do

1010 yi = yix

1212 y = y + yi

The running time of the above algorithm is
∑n
i=0 i = (n(n + 1))/2 = n2/2 − n/2 = Θ(n2), which is slower than the

Θ(n) running time of Horner’s rule.

(c) Here is the loop invariant proof:

• Initialization. Prior to the first iteration of the for loop of lines 2–3, we have y = 0 and i = n. Replacing i = n
on the above loop invariant equation we have:

y =

n−n−1∑
k=0

ak+n+1x
k =

−1∑
k=0

ak+n+1x
k = 0,

which correctly corresponds to the initial value of y on line 1.

• Maintenance. In each iteration i of the loop, the previous value of y is multiplied by x and incremented by ai
(line 3). Performing these two operations on the above loop invariant equation for an iteration i, we have:

ai + x ·

(
n−i−1∑
k=0

ak+i+1x
k

)
= ai +

(
n−i−1∑
k=0

ak+i+1x
k+1

)
= ai +

(
n−i∑
k=1

ak+ix
k

)
=

(
n−i∑
k=0

ak+ix
k

)
,

which correctly corresponds to the loop invariant equation in the iteration i− 1 (next iteration, after iteration i).

• Termination. At termination, we have i = −1, so that:

y =

n−(−1+1)∑
k=0

ak+−1+1x
k =

n∑
k=0

akx
k.

(d) Since the loop invariant holds for all iterations and, at termination, the loop invariant corresponds exactly to the
polynomial definition, we can assure that the code fragment correctly evaluates the polynomial characterized by the
coefficients a0, a1, . . . , an.

2-4 Inversions
Let A[1, . . . , n] be an array of n distinct numbers. If i < j and A[i] > A[j], then the pair (i, j) is called an inversion of A.

a. List the five inversions of the array 〈2, 3, 8, 6, 1〉.
b. What array with elements from the set {1, 2, . . . , n} has the most inversions? How many does it have?

c. What is the relationship between the running time of insertion sort and the number of inversions in the input array? Justify
your answer.

d. Give an algorithm that determines the number of inversions in any permutation on n elements in Θ(n lgn) worst-case time.
(Hint: modify merge sort.)

(a) (1, 4), (1, 5), (2, 5), (3, 5), (4, 5).

(b) {n, n− 1, n− 2, . . . , 2, 1}. It has
(
n
2

)
= n(n− 1)/2 inversions.

(c) The number of operations of Insertion-Sort in an array A is the same as the number of inversions in A.

(d) The following pseudocode modifies Merge-Sort to count the number of inversions in Θ(n lgn).

13

CLRS – Chapter 2 – Getting Started Daniel Bastos Moraes

1 Inversions(A, p, r)
33 inv = 0
55 if p < r then
77 q = b(p+ r)/2c
99 inv = inv + Inversions(A, p, q) + Inversions(A, q + 1, r) + MergeInversions(A, p, q, r)

1111 return inv

1 MergeInversions(A, p, q, r)
33 inv = 0
55 n1 = q − p+ 1
77 n2 = r − q
99 let L[1, . . . , n1 + 1] and R[1, . . . , n2 + 1] be new arrays

1111 for i = 1 to n1 do
1313 L[i] = A[p+ i− 1]

1515 for j = 1 to n2 do
1717 R[j] = A[q + j]

1919 L[n1 + 1] =∞
2121 L[n2 + 1] =∞
2323 i = 1
2525 j = 1
2727 for k = p to r do
2929 if L[i] ≤ R[j] then
3131 i = i+ 1

3333 else
3535 inv = inv + (n1 − i+ 1)
3737 j = j + 1

3939 return inv

14

CLRS – Chapter 3 – Growth of Functions Daniel Bastos Moraes

Growth of Functions

3.1 Asymptotic notation

3.1-1 Let f(n) and g(n) be asymptotically nonnegative functions. Using the basic definition of Θ-notation, prove that max(f(n), g(n)) =
Θ(f(n) + g(n)).

Since f(n) and g(n) are both asymptotically nonnegative,

∃n0 | f(n) ≥ 0 g(n) ≥ 0 ∀n ≥ n0.

From the definition of Θ(·), we have

∃ c1 c2 n0 ∈ R+ | c1f(n) + c1g(n) ≤ max(f(n), g(n)) ≤ c2f(n) + c2g(n) ∀n ≥ n0.

If f(n) ≥ g(n), we have
c1f(n) + c1g(n) ≤ f(n) ≤ c2f(n) + c2g(n).

The right-hand-side inequality is trivially satisfied with c2 = 1. To find c1, we notice that,

f(n) + g(n) ≤ 2f(n),

and say,

c1 =
1

2
.

The demonstration is similar for g(n) > f(n), with c1 = 1/2 and c2 = 1.

3.1-2 Show that for any real constants a and b, where b > 0, (n+ a)b = Θ(nb).

From the definition of Θ(·), we have

∃ c1 c2 n0 ∈ R+ | c1nb ≤ (n+ a)b ≤ c2nb ∀n ≥ n0,

and from the binomial theorem, we have

(n+ a)b =

(
b

0

)
nba0 +

(
b

1

)
nb−1a1 + · · ·+

(
b

b− 1

)
n1ab−1 +

(
b

b

)
n0ab.

To find c1, we notice that for n big enough,(
b

i

)
nb−iai +

(
b

i+ 1

)
nb−(i+1)ai+1 ≥ 0 ∀ i ∈ 0, 2, . . . , b,

which implies (
b

0

)
nba0 +

(
b

1

)
nb−1a1 ≤ (n+ a)b,

and also for n big enough,

nb

2
≤ nb +

(
b

1

)
nb−1a1,

which implies
nb

2
≤ (n+ a)b,

and say

c2 =
1

2
.

To find c2, we notice that for n big enough,

nb =

(
b

0

)
nba0 ≥

(
b

i

)
nb−iai ∀ i ∈ 1, . . . , b,

15

CLRS – Chapter 3 – Growth of Functions Daniel Bastos Moraes

which implies
(n+ a)b ≤ (b+ 1)nb,

and say
c2 = b+ 1.

3.1-3 Explain why the statement, “The running time of algorithm A is at least O(n2),” is meaningless.

Because the O-notation only bounds from the top, not from the bottom.

3.1-4 Is 2n+1 = O(2n)? Is 22n = O(2n)?

From the definition of O(·), we have
∃ c n0 ∈ R+ | 0 ≤ 2n+1 ≤ c · 2n ∀n ≥ n0.

To find c, we notice that,
2n+1 = 2 · 2n,

and say c = 2 and n0 = 0.

From the definition of O(·), we have
∃ c n0 ∈ R+ | 0 ≤ 22n ≤ c · 2n ∀n ≥ n0.

To show that 22n 6= O(2n), we notice that,
22n = 2n · 2n,

which implies
c ≥ 2n,

which is not possible, since c is a constant and n is not.

3.1-5 Prove Theorem 3.1.

To prove
f(n) = Θ(g(n)) ⇐⇒ f(n) = O(g(n)) ∧ f(n) = Ω(g(n)).

we need to show
f(n) = O(g(n)) ∧ f(n) = Ω(g(n))→ f(n) = Θ(g(n)),

and
f(n) = Θ(g(n))→ f(n) = O(g(n)) ∧ f(n) = Ω(g(n)).

From the definition of O(·), we have

∃ c1 n1 ∈ R+ | 0 ≤ f(n) ≤ c1g(n) ∀n ≥ n1,

and from the definition of Ω(·), we have

∃ c2 n2 ∈ R+ | 0 ≤ c2g(n) ≤ f(n) ∀n ≥ n2,

which implies

∃ c1 c2 ∈ R+ n0 = max(n1, n2) | c2g(n) ≤ f(n) ≤ c1g(n) ∀n ≥ n0 ⇐⇒ f(n) = Θ(g(n)).

From the definition of Θ(·), we have

∃ c1 c2 n0 ∈ R+ | c2g(n) ≤ f(n) ≤ c1g(n) ∀n ≥ n0,

which implies
∃ c1 n0 ∈ R+ | 0 ≤ f(n) ≤ c1g(n) ∀n ≥ n0 ⇐⇒ f(n) = O(g(n)),

∃ c2 n0 ∈ R+ | c2g(n) ≤ f(n) ≤ 0 ∀n ≥ n0 ⇐⇒ f(n) = Ω(g(n)).

16

CLRS – Chapter 3 – Growth of Functions Daniel Bastos Moraes

3.1-6 Prove that the running time of an algorithm is Θ(g(n)) if and only if its worst-case running time is O(g(n)) and its best-case
running time is Ω(g(n)).

Let fb(n) and fw(n) be the best and worst-case running times of algorithm A, respectivelly.

If the running time of A is Θ(g(n)), we have
fb(n) = Θ(g(n)),

and
fw(n) = Θ(g(n)).

From Theorem 3.1,
fb(n) = Θ(g(n)) ⇐⇒ fb(n) = O(g(n)) ∧ fb(n) = Ω(g(n)),

and
fw(n) = Θ(g(n)) ⇐⇒ fw(n) = O(g(n)) ∧ fw(n) = Ω(g(n)).

3.1-7 Prove that o(g(n)) ∩ ω(g(n)) is the empty set.

From the definition of o(·), we have

o(g(n)) = {f(n) : ∀ c1 > 0 ∃n1 ∈ R+ | 0 ≤ f(n) < c1g(n) ∀n ≥ n1},

and from the definition of ω(·), we have

ω(g(n)) = {f(n) : ∀ c2 > 0 ∃n2 ∈ R+ | 0 ≤ c2g(n) < f(n) ∀n ≥ n2}.

Thus,
o(g(n)) ∩ ω(g(n)) = {f(n) : ∀ c1 > 0 ∀ c2 > 0 ∃n0 ∈ R+ | 0 ≤ c2g(n) < f(n) < c1g(n) ∀n ≥ n2},

which is the empty set since, for very large n, f(n) cannot be less than c1g(n) and greater than c2g(n) for all c1, c2 > 0.

3.1-8 We can extend our notation to the case of two parameters n and m that can go to infinity independently at different rates. For
a given g(n,m), we denote by O(g(n,m)) the set of functions

O(g(n,m)) = {f(n,m) : there exist positive constants c, n0, and m0 such that 0 ≤ f(n,m) ≤ cg(n,m) for all n ≥ n0 and m ≥ m0}.

Give corresponding definitions for Ω(g(n,m)) and Θ(g(n,m)).

We denote by Ω(g(n,m)) the set of functions

Ω(g(n,m)) = {f(n,m) : ∃ c n0 m0 ∈ R+ | 0 ≤ cg(n,m)) ≤ f(n,m) ∀n ≥ n0 ∀m ≥ m0}.

We denote by Θ(g(n,m)) the set of functions

Θ(g(n,m)) = {f(n,m) : ∃ c1 c2 n0 m0 ∈ R+ | 0 ≤ c1g(n,m) ≤ f(n,m) ≤ c2g(n,m) ∀n ≥ n0 ∀m ≥ m0}.

17

CLRS – Chapter 3 – Growth of Functions Daniel Bastos Moraes

3.2 Standard notations and common functions

3.2-1 Show that if f(n) and g(n) are monotonically increasing functions, then so are the functions f(n) + g(n) and f(g(n)), and if f(n)
and g(n) are in addition nonnegative, then f(n) · g(n) is monotonically increasing.

If f(n) and g(n) are both monitonically increasing and n ≤ m, we have

f(n) ≤ f(m) and g(n) ≤ g(m),

which implies that
f(n)− f(m) ≤ 0 and g(n)− g(m) ≤ 0.

Adding the above inequalities together, we have

f(n)− f(m) + g(n)− g(m) ≤ 0→ f(n) + g(n) ≤ f(m) + g(m),

which shows that f(n) + g(n) is monitonically increasing.

Also, let g(n) = p and g(m) = q. Since f(n) ≤ f(m) and g(n) ≤ g(m), we have

f(p) ≤ f(q)→ f(g(n)) ≤ f(g(m)),

which shows that f(g(n)) is monitonically increasing.

If in addition, f(·) ≥ 0 and g(·) ≥ 0, we have

f(n) ≤ f(m)→ f(n)g(n) ≤ f(m)g(n)→ f(n)g(n) ≤ f(m)g(m),

which shows that f(n) · g(n) is monitonically increasing.

3.2-2 Prove equation (3.16).

For all real a > 0, b > 0, c > 0,

alogb c = a
loga c
loga b =

(
aloga c

) 1
loga b = c

1
loga b = clogb a.

3.2-3 Prove equation (3.19). Also prove that n! = ω(2n) and n! = o(nn).

Using the Stirling’s approximation, we have

lg(n!) ≈ lg

(
√

2πn

(
n

e

)n(
1 + Θ

(
1

n

)))
= lg (

√
2πn) + lg(

√
n) + lg(nn)− lg(en) + Θ(lg(1/n))

= Θ(1) + 1/2 lg(n) + n lgn− n lg e+ Θ(lg(1/n))

= Θ(1) + Θ(lgn) + Θ(n lgn)−Θ(n) + Θ(lg(1/n))

= Θ(n lgn),

which proves Equation (3.19).

We have
n! = n · (n− 1) · (n− 2) · · · 2 · 1 < n · n · n · · ·︸ ︷︷ ︸

n times

= nn ∀n ≥ 2,

which implies
n! = o(nn).

We have
n! = n · (n− 1) · (n− 2) · · · 2 · 1 > 2 · 2 · 2 · · ·︸ ︷︷ ︸

n times

= 2n ∀n ≥ 4,

which implies
n! = w(2n).

18

CLRS – Chapter 3 – Growth of Functions Daniel Bastos Moraes

3.2-4 (?) Is the function dlgne! polynomially bounded? Is the function dlg lgne! polynomially bounded?

A function f(n) is polynomially bounded if there are constants c, k, n0 such that for all n ≥ n0, f(n) ≤ cnk. Thus,
lg(f(n)) ≤ ck lgn.

We have
lg(dlgne!) = Θ(dlgne lg(dlgne)) = Θ(lgn lg lgn) = w(lgn),

which implies that lg(dlgne!) > ck lgn, i.e., dlgne! is not polynomially bounded.

We have
lg(dlg lgne!) = Θ(dlg lgne lg dlg lgne) = Θ(lg lgn lg lg lgn) = o(lg2 lgn) = o(lg2 n) = o(lgn),

which implies that lg(dlg lgne!) ≤ ck lgn, i.e., dlg lgne! is polynomially bounded.

3.2-5 (?) Which is asymptotically larger: lg(lg? n) or lg?(lgn)?

Let’s assume that lg∗(x) = k.

We have
lg(lg∗ x) = lg k,

and
lg∗(lg x) = k − 1,

since the inner logarithm that is applied to x will reduce the number of iterations of the iterative logarithm by 1.

Thus, since (k − 1) is asymptotically larger than lg(k), lg∗(lg x) is also asymptotically larger than lg(lg∗ x).

3.2-6 Show that the golden ration φ and its conjugate φ̂ both satisfy the equation x2 = x+ 1.

The demonstration follows directly from the formulas of φ and φ̂.

φ2 =

(
1 +
√

5

2

)2

=
1 + 2

√
5 + 5

4
=

2
√

5 + 6

4
=

√
5 + 3

2
=

1 +
√

5

2
+ 1 = φ+ 1.

φ̂2 =

(
1−
√

5

2

)2

=
1− 2

√
5 + 5

4
=

6− 2
√

5

4
=

3−
√

5

2
=

1−
√

5

2
+ 1 = φ̂+ 1.

3.2-7 Prove by induction that the ith Fibonacci number satisfies the equality

Fi =
φi − φ̂i√

5
,

where φ is the golden ratio and φ̂ is its conjugate.

We have that

F0 =
φ0 − φ̂0

√
5

=
1− 1√

5
= 0,

and

F1 =
φ1 − φ̂1

√
5

=
1 +
√

5− 1 +
√

5

2
√

5
=

2
√

5

2
√

5
= 1.

which are the correct Fibonacci values for i = 0 and i = 1. Then we have the inductive step:

Fi + Fi+1 =
φi + φ̂i√

5
+
φi+1 + φ̂i+1

√
5

=
φi + φi+1 − (φ̂i + φ̂i+1)√

5

=
φi(1 + φ)− φ̂i(1 + φ)√

5

=
φiφ2 − φ̂iφ̂2

√
5

=
φi+2 − φ̂i+2

√
5

= Fi+2.

19

CLRS – Chapter 3 – Growth of Functions Daniel Bastos Moraes

3.2-8 Show that k ln k = Θ(n) implies k = Θ(n/ lnn).

From the symmetry of Θ, we have
k ln k = Θ(n)→ n = Θ(k ln k),

and
lnn = Θ(ln(k ln k)) = Θ(ln k ln ln k) = Θ(ln k).

Thus,
n

lnn
=

Θ(k ln k)

Θ(ln k ln ln k)
= Θ

(
k ln k

ln k ln ln k

)
= Θ(k),

which implies

k = Θ
(n

lnn

)
.

20

CLRS – Chapter 3 – Growth of Functions Daniel Bastos Moraes

Problems

Skipped for later.

21

CLRS – Chapter 4 – Divide-and-Conquer Daniel Bastos Moraes

Divide-and-Conquer

4.1 The maximum-subarray problem

4.1-1 What does Find-Maximum-Subarray return when all elements of A are negative?

A subarray with only the largest negative element of A.

4.1-2 Write pseudocode for the brute-force method of solving the maximum-subarray problem. Your procedure should run in Θ(n2)
time.

The pseudocode is stated below.

1 FindMaximumSubarray-BruteForce(A)
33 low = 0
55 high = 0
77 sum = −∞
99 for i = 1 to A.length do

1111 cursum = 0
1313 for j = i to A.length do
1515 cursum = cursum+A[j]
1717 if cursum > sum then
1919 sum = cursum
2121 low = i
2323 high = j

2525 return low, high, sum

4.1-3 Implement both the brute-force and recursive algorithms for the maximum-subarray problem on your own computer. What
problem size n0 gives the crossover point at which the recursive algorithm beats the brute-force algorithm? Then, change the
base case of the recursive algorithm to use the brute-force algorithm whenever the problem size is less than n0. Does that change
the crossover point?

Figure below in the lhs ilustrates the crossover point between the BruteForce and Recursive solutions in my machine. In that
comparison, n0 ≈ 52. Figure below in the rhs ilustrates the crossover point between the BruteForce and Mixed solutions in
my machine. The crossover point does not change but the Mixed solution becomes as fast as the BruteForce solution when
the problem size is lower than 52.

	0

	0.0001

	0.0002

	0.0003

	0.0004

	0.0005

	0.0006

	10 	20 	30 	40 	50 	60 	70 	80 	90	100

Ti
m
e	
(s
ec
on
ds
)

Size	of	the	array

BruteForce
Recursive

	0

	0.0001

	0.0002

	0.0003

	0.0004

	0.0005

	0.0006

	10 	20 	30 	40 	50 	60 	70 	80 	90	100

Ti
m
e	
(s
ec
on
ds
)

Size	of	the	array

BruteForce
Mixed

4.1-4 Suppose we change the definition of the maximum-subarray problem to allow the result to be an empty subarray, where the sum
of the values of an empty subarray is 0. How would you change any of the algorithms that do not allow empty subarrays to
permit an empty subarray to be the result?

The BruteForce algorithm (stated above in Question 4.1-2) can be updated just by modifying line 3 to sum = 0, instead of
sum = −∞. In that case, if there is no subarray whose sum is greater than zero, the algorithm will return a invalid subarray
(low = 0, high = 0, sum = 0), which will denote the empty subarray.

The Recursive algorithm (stated in Section 4.1) can be updated as follows. In the Find-Max-Crossing-Subarray routine,
update lines 1 and 8 to initialize left-sum and right-sum to 0, instead of −∞. Also initialize max-left (after line 1) and

22

CLRS – Chapter 4 – Divide-and-Conquer Daniel Bastos Moraes

max-right (after line 8) to 0. In the Find-Maximum-Subarray routine, surround the return statement of line 2 with a
conditional that verifies if A[low] is greater than zero. If it is, return the values as it was before. If it is not, return a invalid
subarray (denoted by low = 0 and high = 0) and the sum as zero.

4.1-5 Use the following ideas to develop a nonrecursive, linear-time algorithm for the maximum-subarray problem. Start at the left end
of the array, and progress toward the right, keeping track of the maximum subarray seen so far. Knowing a maximum subarray of
A[1, . . . , j], extend the answer to find a maximum subarray ending at index j+ 1 by using the following observation: a maximum
subarray of A[1, . . . , j + 1] is either a maximum subarray of A[1, . . . , j] or a subarray A[i, . . . , j + 1], for some 1 ≤ i ≤ j + 1.
Determine a maximum subarray of the form A[i, . . . , j + 1] in constant time based on knowing a maximum subarray ending at
index j.

The pseudocode is stated below.

1 FindMaximumSubarray-Linear(A)
33 low = 0
55 high = 0
77 sum = 0
99 current-low = 0

1111 current-sum = 0
1313 for i = 1 to A.length do
1515 current-sum = max(A[i], current-sum+A[i])
1717 if current-sum == A[i] then
1919 current-low = i

2121 if current-sum > sum then
2323 low = current-low
2525 high = i
2727 sum = current-sum

2929 return low, high, sum

We can make it a little faster (twice as fast on my machine) by avoiding executing lines 7, 8, and 10 when not necessary.

1 FindMaximumSubarray-Linear-Optimized(A)
33 low = 0
55 high = 0
77 sum = 0
99 current-low = 0

1111 current-sum = 0
1313 for i = 1 to A.length do
1515 if current-sum+A[i] ≤ 0 then
1717 current-sum = 0

1919 else
2121 current-sum = current-sum+A[i]
2323 if current-sum == A[i] then
2525 current-low = i

2727 if current-sum > sum then
2929 low = current-low
3131 high = i
3333 sum = current-sum

3535 return low, high, sum

23

CLRS – Chapter 4 – Divide-and-Conquer Daniel Bastos Moraes

4.2 Strassen’s algorithm for matrix multiplication

4.2-1 Use Strassen’s algorithm to compute the matrix product[
1 3
7 5

] [
6 8
4 2

]
.

Show your work.

Let

A =

[
1 3
7 5

]
, B =

[
6 8
4 2

]
,

and C = A ·B. To compute C using Strassen’s algorithm, we start by computing the Si matrices:

S1 = B12 −B22 = 8− 2 = 6,

S2 = A11 +A12 = 1 + 3 = 4,

S3 = A21 +A22 = 7 + 5 = 12,

S4 = B21 −B11 = 4− 6 = −2,

S5 = A11 +A22 = 1 + 5 = 6,

S6 = B11 +B22 = 6 + 2 = 8,

S7 = A12 +A22 = 3− 5 = −2,

S8 = B21 +B22 = 4 + 2 = 6,

S9 = A11 −A21 = 1− 7 = −6,

S10 = B11 +B12 = 6 + 8 = 14.

Then we compute the Pi matrices:
P1 = A11 · S1 = 1 · 6 = 6,

P2 = S2 ·B22 = 4 · 2 = 8,

P3 = S3 ·B11 = 12 · 6 = 72,

P4 = A22 · S4 = 5 · (−2) = −10,

P5 = S5 · S6 = 6 · 8 = 48,

P6 = S7 · S8 = (−2) · 6 = −12,

P7 = S9 · S10 = (−6) · 14 = −84.

Using matrices Si and Pi, we compute C:

C =

[
(P5 + P4 − P2 + P6) (P2 + P2)

(P3 + P4) (P5 + P1 − P3 − P7)

]
=

[
18 14
62 66

]
.

24

CLRS – Chapter 4 – Divide-and-Conquer Daniel Bastos Moraes

4.2-2 Write pseudocode for Strassen’s algorithm.

The pseudocode is stated below.

1 Square-Matrix-Multiply-Strassen(A, B)
33 n = A.rows
55 let C be a new n× n matrix
77 if n == 1 then
99 c11 = a11 · b11

1111 else
1313 partition A,B, and C as into n/2× n/2 submatrices
1515 let S1, S2, . . . , S10 be new n/2× n/2 matrices
1717 let P1, P2, . . . , P7 be new n/2× n/2 matrices
1919 S1 = B12 −B22

2121 S2 = A11 +A12

2323 S3 = A21 +A22

2525 S4 = B21 −B11

2727 S5 = A11 +A22

2929 S6 = B11 +B22

3131 S7 = A12 −A22

3333 S8 = B21 +B22

3535 S9 = A11 −A21

3737 S10 = B11 −B12

3939 P1 = Square-Matrix-Multiply-Strassen(A11, S1)
4141 P2 = Square-Matrix-Multiply-Strassen(S2, B22)
4343 P3 = Square-Matrix-Multiply-Strassen(S3, B11)
4545 P4 = Square-Matrix-Multiply-Strassen(A22, S4)
4747 P5 = Square-Matrix-Multiply-Strassen(S5, S6)
4949 P6 = Square-Matrix-Multiply-Strassen(S7, S8)
5151 P7 = Square-Matrix-Multiply-Strassen(S9, S10)
5353 C11 = P5 + P4 − P2 + P6

5555 C12 = P1 + P2

5757 C21 = P3 + P4

5959 C22 = P5 + P1 − P3 − P7

6161 return C

4.2-3 How would you modify Strassen’s algorithm to multiply n × n matrices in which n is not an exact power of 2? Show that the
resulting algorithm runs in time Θ(nlg 7).

Pad each input n× n matrix (rows and columns) with m− n zeros, resulting in an m×m matrix, where m = 2dlgne. After
computing the final matrix, cut down the last m− n rows and m− n columns (which will be zeros).

Padding the matrix with zeros is done once, in the root of the recursion tree, and takes O(m2). Since we now have an m×m
matrix, the algorithm runs in Θ(mlg 7) + O(m2) = Θ(mlg 7). We have that n ≤ m < 2(lgn)+1 = 2lgn · 2 = 2n. Thus, the
algorithm runs in Θ((2n)lg 7) = Θ(nlg 7).

4.2-4 What is the largest k such that if you can multiply 3 × 3 matrices using k multiplications (not assuming commutativity of
multiplication), then you can multiply n× n matrices in time o(nlg 7)? What would the running time of this algorithm be?

If we modify the Square-Matrix-Multiply-Recursive algorithm to partition the matrices into n/3 × n/3 submatrices,
we would have the following recurrence:

T (n) = Θ(1) + 27T (n/3) + Θ(n2) = 27T (n/3) + Θ(n2).

Let’s proceed to understand a little more about the above recurrence. Let A and B be the two input matrices in each node
of the above recursion tree. Like in the original Square-Matrix-Multiply-Recursive algorithm, our modified version will
take Θ(1) to partition A and B into n/3× n/3 submatrices. In each node of the tree, the product of A and B is recursively
computed by the products of their submatrices. Since the number of recursive (submatrices) products to compute A · B
in each node of the recurstion tree is 27 and each of these submatrices is 3 times smaller than A and B, the 27 recursive
products takes 27T (n/3). Finally, the number of summations to compute the final matrix is Θ(3 · 9 · n2/3) = Θ(n2).

25

CLRS – Chapter 4 – Divide-and-Conquer Daniel Bastos Moraes

If after partitioning A and B into n/3 × n/3 submatrices we can compute their product with k multiplications (instead of
27), we would have the following recurrence:

T (n) = Θ(1) + kT (n/3) + Θ(n2) = kT (n/3) + Θ(n2),

We can solve the above recurrence using the master method. We have f(n) = n2 and nlogba = nlog3 k. Using the first case
of the master method, we have

∀ k | log3 k > 2, n2 = O(n(log3 k)−ε), 0 ≤ ε ≤ log3 k − 2,

which implies
T (n) = Θ(nlog3 k).

Since log3 21 < lg 7 < log3 22, the largest value for k is 21. Its running time would be nlog3 21 ≈ n2.7712.

4.2-5 V. Pan has discovered a way of multiplying 68× 68 matrices using 132,464 multiplications, a way of multiplying 70× 70 matrices
using 143,640 multiplications, and a way of multiplying 72 × 72 matrices using 155,424 multiplications. Which method yields
the best asymptotic running time when used in a divide-and-conquer matrix-multiplication algorithm? How does it compare to
Strassen’s algorithm?

The algorithms would take:

• nlog68 132,464 ≈ n2.795128,

• nlog70 143,640 ≈ n2.795122,

• nlog72 155,424 ≈ n2.795147.

The fastest is the one that multiplies 70× 70 matrices, but all of them are faster then the Strassen’s algorithm.

4.2-6 How quickly can you multiply a kn × n matrix by an n × kn matrix, using Strassen’s algorithm as a subroutine? Answer the
same question with the order of the input matrices reversed.

Let A and B be kn× n and n× kn matrices, respectivelly. We can compute A ·B as follows:

(a) Partition A and B into k submatrices A1, . . . , Ak and B1, . . . , Bk, each one of size n× n.

(b) Compute the desired submatrices Cij of the result matrix C by the product of Ai ·Bj . Use the Strassen’s algorithm to
compute each of those products.

Since each of the k2 products takes Θ(nlg 7), this algorithm runs in Θ(k2nlg 7).

We can compute B ·A as follows:

(a) Partition A and B into k submatrices A1, . . . , Ak and B1, . . . , Bk, each one of size n× n.

(b) Compute the the result matrix C =
∑k
i=1Ai ·Bi. Use the Strassen’s algorithm to compute each of those products.

Since each of the k products takes Θ(nlg 7) and the k− 1 summations takes Θ((k− 1)n2/k) = O(n2), this algorithm runs in
Θ(knlg 7) +O(n2) = Θ(knlg 7).

4.2-7 Show how to multiply the complex numbers a + bi and c + di using only three multiplications of real numbers. The algorithm
should take a, b, c, and d as input and produce the real component ac− bd and the imaginary component ad+ bc separately.

The pseudocode is stated below.

1 Complex-Product(a, b, c, d)
33 x = a · c
55 y = b · d
77 real-part = x− y
99 imaginary-part = (a+ b) · (c+ d)− x− y

1111 return real-part, imaginary-part

26

CLRS – Chapter 4 – Divide-and-Conquer Daniel Bastos Moraes

4.3 The substitution method for solving recurrences

4.3-1 Show that the solution of T (n) = T (n− 1) + n is O(n2).

Our guess is
T (n) ≤ cn2 ∀n ≥ n0,

where c and n0 are positive constants. Substituting into the recurrence yields

T (n) ≤ c(n− 1)2 + n

= cn2 − 2cn+ c+ n (c = 1)

= n2 − 2n+ n+ 1

= n2 − n+ 1

≤ n2,

where the last step holds as long as n0 ≥ 1.

4.3-2 Show that the solution of T (n) = T (dn/2e) + 1 is O(lgn).

Our guess is
T (n) ≤ c lgn− d ∀n ≥ n0,

where c, d, and n0 are positive constants. Substituting into the recurrence yields

T (n) ≤ c lg(dn/2e)− d+ 1

≤ c lgn− d+ 1

≤ c lgn,

where the last step holds as long as d ≥ 1.

4.3-3 We saw that the solution of T (n) = 2T (bn/2c) + n is O(n lgn). Show that the solution of this recurrence is also Ω(n lgn).
Conclude that the solution is Θ(n lgn).

Our guess is
T (n) ≥ cn lgn ∀n ≥ n0,

where c and n0 are positive constants. Substituting into the recurrence yields

T (n) ≥ 2(cbn/2c lgbn/2c) + n

≥ 2c(n/4) lg(n/4) + n

= c(n/2) lgn− c(n/2) lg 4 + n

= c(n/2) lgn− cn+ n

≥ cn lgn,

where the last step holds as long as c ≤ 1.

Thus, we have
c1n lgn ≤ T (n) ≤ c2n lgn,

with c1 ≤ 1 and c2 ≥ 1, which implies
T (n) = Θ(n lgn).

27

CLRS – Chapter 4 – Divide-and-Conquer Daniel Bastos Moraes

4.3-4 Show that by making a different inductive hypothesis, we can overcome the difficulty with the boundary condition T (1) = 1 for
recurrence (4.19) without adjusting the boundary conditions for the inductive proof.

Our new guess is
T (n) ≤ cn lgn+ n ∀n ≥ n0,

where c, d, and n0 are positive constants. Substituting into the recurrence yields

T (n) ≤ 2(cbn/2c lgbn/2c+ bn/2c) + n

≤ cn lg(n/2) + 2(n/2) + n

= cn lgn− cn lg 2n+ 2n

= cn lgn− cn+ 2n

≤ cn lgn+ n,

where the last step holds as long as c ≥ 1.

Now on the boundary condition, we have

T (1) ≤ c(n lgn) + n = c1 lg 1 + 1 = 0 + 1 = 1.

4.3-5 Show that Θ(n lgn) is the solution to the “exact” recurrence (4.3) for merge sort.

First, we verify if (4.3) is O(n lgn). Our guess is

T (n) ≤ c(n− d) lg(n− d) ∀n ≥ n0,

where c, d, and n0 are positive constants. Substituting into the recurrence yields

T (n) ≤ c(dn/2e − d) lg(dn/2e − d) + c(bn/2c − d) lg(bn/2c − d) + en

≤ c(n/2 + 1− d) lg(n/2 + 1− d) + c(n/2− d) lg(n/2− d) + en (d ≥ 2)

≤ c
(
n− d

2

)
lg

(
n− d

2

)
+ c

(
n− d

2

)
lg

(
n− d

2

)
+ en

= c(n− d) lg

(
n− d

2

)
+ en

= c(n− d) lg(n− d)− c(n− d) + en

= c(n− d) lg(n− d)− cn+ en+ cd

≤ c(n− d) lg(n− d),

where the last step holds as long as c > e and n0 ≥ cd.

Then we verify if (4.3) is Ω(n lgn). Our guess is

T (n) ≥ c(n+ d) lg(n+ d) ∀n ≥ n0,

where c, d, and n0 are positive constants. Substituting into the recurrence yields

T (n) ≥ c(dn/2e+ d) lg(dn/2e+ d) + c(bn/2c+ d) lg(bn/2c+ d) + en

≥ c(n/2 + d) lg(n/2 + d) + c(n/2− 1 + d) lg(n/2− 1 + d) + en (d ≥ 2)

≥ c
(
n+ d

2

)
lg

(
n+ d

2

)
+ c

(
n+ d

2

)
lg

(
n+ d

2

)
+ en

= c(n+ d) lg

(
n+ d

2

)
+ en

= c(n+ d) lg(n+ d)− c(n+ d) + en

= c(n+ d) lg(n+ d)− cn+ en− cd
≥ c(n+ d) lg(n+ d),

where the last step holds as long as e > c and n0 ≥ cd.

28

CLRS – Chapter 4 – Divide-and-Conquer Daniel Bastos Moraes

4.3-6 Show that the solution to T (n) = 2T (bn/2c+ 17) + n is O(n lgn).

Our guess is
T (n) ≤ c(n− d) lg(n− d) ∀n ≥ n0,

where c, d, and n0 are positive constants. Substituting into the recurrence yields

T (n) ≤ 2c(bn/2c − d+ 17) lg(bn/2c − d+ 17) + n

≤ 2c(n/2− d+ 17) lg(n/2− d+ 17) + n (d ≥ 34)

≤ 2c

(
n− d

2

)
lg

(
n− d

2

)
+ n

= c(n− d) lg

(
n− d

2

)
+ n

= c(n− d) lg(n− d)− c(n− d) + n

= c(n− d) lg(n− d)− cn+ n+ cd

≤ c(n− d) lg(n− d),

where the last step holds as long as c ≥ 2 and n0 ≥ cd.

4.3-7 Using the master method in Section 4.5 you can show that the solution to the recurrence T (n) = 4T (n/3)+n is T (n) = Θ(nlog3 4).
Show that a substitution proof with the assumption T (n) ≤ cnlog3 4 fails. Then show how to subtract off a lower-order term to
make a substitution proof work.

The initial guess is
T (n) ≤ cnlog3 4 ∀n ≥ n0,

where c, and n0 are positive constants. Substituting into the recurrence yields

T (n) ≤ 4c
(n

3

)log3 4

+ n

= 4c
nlog3 4

4
+ n

= cnlog3 4 + n

which does not imply T (n) ≤ cnlog3 4 for any choice of c.

Our new guess is
T (n) ≤ cnlog3 4 − dn ∀n ≥ n0,

where c, d, and n0 are positive constants. Substituting into the recurrence yields

T (n) ≤ 4

(
c
(n

3

)log3 4

− dn
3

)
+ n

= 4c
nlog3 4

4
− 4d

n

3
+ n

≤ cnlog3 4,

where the last step holds as long as d ≥ 3/4.

4.3-8 Using the master method in Section 4.5, you can show that the solution to the recurrence T (n) = 4T (n/2) + n is T (n) = Θ(n2).
Show that a substitution proof with the assumption T (n) ≤ cn2 fails. Then show how to subtract off a lower-order term to make
a substitution proof work.

The initial guess is
T (n) ≤ cn2 ∀n ≥ n0,

where c, and n0 are positive constants. Substituting into the recurrence yields

T (n) ≤ 4c
(n

2

)2
+ n

= cn2 + n

which does not imply T (n) ≤ cn2 for any choice of c.

29

CLRS – Chapter 4 – Divide-and-Conquer Daniel Bastos Moraes

Our new guess is
T (n) ≤ cn2 − dn ∀n ≥ n0,

where c, d, and n0 are positive constants. Substituting into the recurrence yields

T (n) ≤ 4

(
c
(n

2

)2
− dn

2

)
+ n

= cn2 − 2dn+ n

≤ cn2,

where the last step holds as long as d ≥ 1/2.

4.3-9 Solve the recurrence T (n) = 3T (
√
n) + logn by making a change of variables. Your solution should be asymptotically tight. Do

not worry about whether values are integral.

Renaming m = logn yields
T (10m) = 3T (10m/2) +m.

Now renaming S(m) = T (2m) yields
S(m) = 3S(m/2) +m.

With the master method, we have f(n) = m = log n and nlogb a = nlg 3 ≈ n1.585. Using the first case, we have

f(n) = logn = O(nlg 3−ε), (ε = 0.5)

which implies
S(m) = Θ(mlg 3).

We can double-check if S(m) = O(mlg 3) using the substition method. Our guess is

S(m) ≤ cmlg 3 − dm ∀m ≥ m0,

where c, d, and n0 are positive constants. Substituting into the recurrence yields

T (n) ≤ 3

(
c
(m

2

)lg 3

− dm
2

)
+m

= 3c
mlg 3

3
− 3d

m

2
+m

≤ cmlg 3 + dm

where the last step holds as long as d ≥ 2/3.

Now verifying if S(m) = Ω(mlg 3) with the substitution method. Our guess is

S(m) ≥ cmlg 3 ∀m ≥ m0,

where c, and n0 are positive constants. Substituting into the recurrence yields

T (n) ≥ 3c
(m

2

)lg 3

+m

= 3c
mlg 3

3
+m

≥ cmlg 3.

Finally, we have
T (n) = T (10m) = S(m) = Θ(mlg 3) = Θ(loglg 3 n).

30

CLRS – Chapter 4 – Divide-and-Conquer Daniel Bastos Moraes

4.4 The recursion-tree method for solving recurrences

4.4-1 Use a recursion tree to determine a good asymptotic upper bound on the recurrence T (n) = 3T (bn/2c) +n. Use the substitution
method to verify your answer.

Since floors/ceiling usually do not matter, we will draw a recursion tree for the recurrence T (n) = 3T (n/2) + n.

The number of nodes at depth i is 3i. Since subproblem size reduce by a factor of 2, each node at depth i, for i =
0, 1, 2, . . . , lgn−1, has a cost of c(n/2i). Thus, the total cost over all nodes at depth i, for i = 0, 1, 2, . . . , lgn−1, is (3/2)icn.
The bottom level, at deph lgn, has 3lgn = nlg 3 nodes, each contributing cost T (1), for a total cost of nlg 3T (1) = Θ(nlg 3).

The cost of the entire tree is

T (n) = cn+
3

2
cn+

(
3

2

)2

cn+ · · ·+
(

3

2

)lgn−1

cn+ Θ
(
nlg 3

)
=

lgn−1∑
i=0

(
3

2

)i
cn+ Θ(nlg 3)

= cn

(
3
2

)lgn − 1
3
2
− 1

+ Θ(nlg 3)

= 2cn

((
3

2

)lgn

− 1

)
+ Θ(nlg 3)

= 2cn
3lgn

2lgn
− 2cn+ Θ(nlg 3)

= 2cn
nlg 3

n
− 2cn+ Θ(nlg 3)

= 2cnlg 3 − 2cn+ Θ(nlg 3)

= O(nlg 3).

Our guess is
T (n) ≤ cnlg 3 − dn ∀n ≥ n0,

where c, d, and n0 are positive constants. Substituting into the recurrence yields

T (n) ≤ 3

(
c
⌊n

2

⌋lg 3

− d
⌊n

2

⌋)
+ n

≤ 3c

3
nlg 3 − 3d

2
n+ n

= cnlg 3 − dn− d

2
n+ n

≤ cnlg 3 − dn,

where the last step holds as long as d ≥ 2.

31

CLRS – Chapter 4 – Divide-and-Conquer Daniel Bastos Moraes

4.4-2 Use a recursion tree to determine a good asymptotic upper bound on the recurrence T (n) = T (n/2) + n2. Use the substitution
method to verify your answer.

Figure below ilustrates the recursion tree T (n) = T (n/2) + n2.

The tree has lgn levels and the cost at depth i is c(n/2i)2 = (1/4)icn2.

The cost of the entire tree is

T (n) =

lgn∑
i=0

(
1

4

)i
cn2

<

∞∑
i=0

(
1

4

)i
cn2

=
1

1− (1/4)
cn2

=
4

3
cn2

= O(n2).

Our guess is
T (n) ≤ dn2 ∀n ≥ n0,

where d, and n0 are positive constants. Substituting into the recurrence and using the same constant c > 0 as before yields

T (n) ≤ d
(n

2

)2
+ cn2

=
1

4
dn2 + cn2

≤ dn2,

where the last step holds as long as d ≥ (4/3)c.

32

CLRS – Chapter 4 – Divide-and-Conquer Daniel Bastos Moraes

4.4-3 Use a recursion tree to determine a good asymptotic upper bound on the recurrence T (n) = 4T (n/2+2)+n. Use the substitution
method to verify your answer.

Figure below ilustrates the recursion tree T (n) = 4T (n/2 + 2) + n.

The number of nodes at depth i is 4i. Since subproblem size reduce by a factor of 2 and increment 2, each node at depth i,
for i = 0, 1, 2, . . . , lgn− 1, has a cost of c(n/2i + 2). Thus, the total cost over all nodes at depth i, for i = 0, 1, 2, . . . , lgn− 1,
is 4ic(n/2i + 2) = 2icn + 22i+1. The bottom level, at deph lgn, has 4lgn = nlg 4 nodes, each contributing cost T (1), for a
total cost of nlg 4T (1) = Θ(nlg 4).

The cost of the entire tree is

T (n) =

lgn−1∑
i=0

(
4ic
(n

2i
+ 2
))

+ Θ(n2)

=

lgn−1∑
i=0

(
4ic · n

2i

)
+

lgn−1∑
i=0

(4ic · 2) + Θ(n2)

= cn

lgn−1∑
i=0

(2i) + 2c

lgn−1∑
i=0

(4i) + Θ(n2)

= cn
2lgn − 1

2− 1
+ 2c

4lgn − 1

4− 1
+ Θ(n2)

= cn(n− 1) +
2c

3
(n2 − 1) + Θ(n2)

= cn2 − cn+
2cn2

3
− 2c

3
+ Θ(n2)

= O(n2).

Our guess is
T (n) ≤ cn2 − dn ∀n ≥ n0,

where c, d, and n0 are positive constants. Substituting into the recurrence yields

T (n) ≤ 4

(
c
(n

2
+ 2
)2
− d

(n
2

+ 2
))

+ n

≤ 4

(
c
n2

4
+ 2cn+ 4c− dn

2
− 2d

)
+ n

= cn2 + 8cn+ 16c− 2dn− 8d+ n

= cn2 − dn− (d− 8c− 1)n− (d− 2c)8

≤ cn2 − dn,

where the last step holds as long as d− 8c− 1 ≥ 0.

33

CLRS – Chapter 4 – Divide-and-Conquer Daniel Bastos Moraes

4.4-4 Use a recursion tree to determine a good asymptotic upper bound on the recurrence T (n) = 2T (n− 1) + 1. Use the substitution
method to verify your answer.

Figure below ilustrates the recursion tree T (n) = 2T (n− 1) + 1.

The tree has n levels and 2i nodes at each level. Since each node costs 1, the cost at depth i is 2i. The bottom level, at
deph n, has 2n nodes, each contributing cost 1, for a total cost of 2n = Θ(2n).

The cost of the entire tree is

T (n) =

n−1∑
i=0

(2i) + Θ(2n)

=
2n − 1

2− 1
+ Θ(2n)

= 2n − 1 + Θ(2n)

= O(2n).

Our guess is
T (n) ≤ c2n − d ∀n ≥ n0,

where c, d, and n0 are positive constants. Substituting into the recurrence yields

T (n) ≤ 2(c2n−1 − d) + 1

= c2n − 2d+ 1

= c2n − d− d+ 1

≤ c2n − d,

where the last step holds as long as d ≥ 1.

34

CLRS – Chapter 4 – Divide-and-Conquer Daniel Bastos Moraes

4.4-5 Use a recursion tree to determine a good asymptotic upper bound on the recurrence T (n) = T (n − 1) + T (n/2) + n. Use the
substitution method to verify your answer.

Figure below ilustrates the recursion tree T (n) = T (n− 1) + T (n/2) + n.

We start obtaining a lower bound. The cost of the initial levels (before level lgn) of the tree are

cn→ (3/2)1cn− c→ (3/2)2cn− (7/2)c→ (3/2)3cn− (37/4)c.

Thus, the cost of the tree from the root to level lgn is at most

lgn∑
i=0

(
3

2

)i
cn = cn

(
3
2

)lgn+1 − 1
3
2
− 1

= 2cn
3

2

(
3

2

)lgn

− 2cn = 3cn
nlg 3

n
− 2cn = 3cnlg 3 − 2cn = O(nlg 3).

The cost of the longest simple path from the root to a leaf is

n∑
i=0

c(n− i) = c

n∑
i=0

i = c
n(n+ 1)

2
= c

n2

2
+
c

2
= O(n2).

Thus, our guess for a lower bound for T (n) is
T (n) ≥ cn2 ∀n ≥ n0,

where c, and n0 are positive constants. Substituting into the recurrence yields

T (n) ≥ c(n− 1)2 + c
(n

2

)2
+ n

= cn2 − 2cn+ 1 +
cn2

4
+ n

=
5

4
cn2 − 2cn+ n+ 1

≥ cn2 − 2cn+ n+ 1

≥ cn2,

where the last step holds as long as c ≥ 1 and n0 ≥ 1. Thus, we have T (n) = Ω(n2).

Consider now the recurrence
S(n) = 2T (n− 1) + n,

which is more costly than T (n). We can easily prove that S(n) = O(2n). Our guess for an upper bound of S(n) is

S(n) ≤ c2n − dn ∀n ≥ n0,

where c, d, and n0 are positive constants. Substituting into the recurrence yields

S(n) ≤ 2(c2n−1 − d(n− 1)) + n

= c2n − 2dn+ 2d+ n

= c2n − dn− n(d− 1) + 2d

≤ c2n − dn,

where the last step holds as long as d ≥ 2 and n0 ≥ 3. Thus, we have T (n) = O(S(n)) = O(2n).

35

CLRS – Chapter 4 – Divide-and-Conquer Daniel Bastos Moraes

We can obtain a more tight upper bound without using the recursion tree. Let R(n) = T (n/2) + n. We have

T (n) = T (n− 1) +R(n)

= T (n− 2) +R(n− 1) +R(n)

= R(1) +R(2) + · · ·+R(n− 1) +R(n)

≤ n ·R(n)

= n · T (n/2) + n2,

which can be solved using the master method. We have f(n) = n2 and nlogb a = nlgn. Using the first case, we have

f(n) = n2 = O(nlgn−ε), (ε = 1)

which implies
T (n) = O(nlgn).

36

CLRS – Chapter 4 – Divide-and-Conquer Daniel Bastos Moraes

4.4-6 Argue that the solution to the recurrence T (n) = T (n/3) + T (2n/3) + cn, where c is a constant, is Ω(n lgn) by appealing to a
recursion tree.

Figure below ilustrates the recursion tree T (n) = T (n/3) + T (2n/3) + cn.

The tree is complete until level log3 n. The cost of the tree from the root to level log3 n is

log3 n∑
i=0

cn = cn log3 n,

which is Ω(n lgn).

37

CLRS – Chapter 4 – Divide-and-Conquer Daniel Bastos Moraes

4.4-7 Draw the recursion tree for T (n) = 4T (bn/2c) + cn, where c is a constant, and provide a tight asymptotic bound on its solution.
Verify your bound by the substitution method.

Since floors/ceiling usually do not matter, we will draw a recursion tree for the recurrence T (n) = 4T (n/2) + cn.

The number of nodes at depth i is 4i. Since subproblem size reduce by a factor of 2, each node at depth i, for i =
0, 1, 2, . . . , lgn − 1, has a cost of c(n/2i). Thus, the total cost over all nodes at depth i, for i = 0, 1, 2, . . . , lgn − 1, is
(4/2)icn = 2icn. The bottom level has 4lgn = n2 nodes, each contributing cost T (1), for a total cost of n2T (1) = Θ(n2).

The cost of the entire tree is

lgn−1∑
i=0

(2icn) + Θ(n2) = cn
2lgn − 1

2− 1
+ Θ(n2) = cn(n− 1) + Θ(n2) = cn2 − cn+ Θ(n2) = Θ(n2).

Lets verify with the substitution method. Our guess for an upper bound is

T (n) ≤ dn2 − en ∀n ≥ n0,

where d, e, and n0 are positive constants. Substituting into the recurrence yields

T (n) ≤ 4

(
d
⌊n

2

⌋2
−en

2

)
+ cn

≤ 4

(
d
(n

2

)2
− en

2

)
+ cn

= 4

(
d
n2

4
− en

2

)
+ cn

= dn2 − 2en+ cn

= dn2 − en− en+ cn

≤ dn2 − en,

where the last step holds as long as e ≥ c.
Our guess for a lower bound is

T (n) ≥ dn2 ∀n ≥ n0,

where d, and n0 are positive constants. Substituting into the recurrence yields

T (n) ≥ 4d
⌊n

2

⌋2
+cn

≥ 4d
(n

2
− 1
)2

+ cn

= 4d

(
n2

4
− n+ 1

)
+ cn

= dn2 − 4dn+ 4d+ cn

= dn2 − (4d− c)n+ 4d

where the last step holds as long as 4d− c ≥ 4 and n0 ≥ d.

38

CLRS – Chapter 4 – Divide-and-Conquer Daniel Bastos Moraes

4.4-8 Use a recursion tree to give an asymptotically tight solution to the recurrence T (n) = T (n − a) + T (a) + cn, where a ≥ 1 and
c > 0 are constants.

Figure below ilustrates the recursion tree T (n) = T (n− a) + T (a) + cn.

The height of the tree is n/a. Each level i, for i = 1, 2, . . . , (n/a), has two nodes, one that costs c(n− ia) and another that
costs T (a) = ca. Thus, the cost over the nodes at depth i, for i = 1, 2, . . . , (n/a), is c(n− a) + ca. The root level, at deph 0,
has a single node that costs cn.

The cost of the entire tree is

T (n) = cn+

n/a∑
i=1

(c(n− ia) + ca)

= cn+

n/a∑
i=1

cn−
n/a∑
i=1

cia+

n/a∑
i=1

ca

= cn+ c
n2

a
− cn(a+ n)

2a
+ cn

= c
n2

a
− cn

2

2a
− cn

2
+ 2cn

= c
n2

2a
+

3

2
cn

= Θ(n2).

Lets verify with the substitution method. Our guess for an upper bound is

T (n) ≤ cn2 ∀n ≥ n0,

where c and n0 are positive constants. Substituting into the recurrence yields

T (n) ≤ c(n2 − 2an+ a2) + ca+ cn

= cn2 − c(2an− a− n− a2)

≤ cn2,

where the last step holds as long as n0 ≥ a.

Our guess for a lower bound is

T (n) ≥ c

2a
n2 ∀n ≥ n0,

where c, and n0 are positive constants. Substituting into the recurrence yields

T (n) ≥ c

2a
(n− a)2 + ca+ cn

=
c

2a
(n2 − 2an+ a2) + ca+ cn

=
c

2a
n2 − cn+

1

2
ca+ ca+ cn

=
c

2a
n2 +

3

2
ca

≥ c

2a
n2.

39

CLRS – Chapter 4 – Divide-and-Conquer Daniel Bastos Moraes

4.4-9 Use a recursion tree to give an asymptotically tight solution to the recurrence T (n) = T (αn) + T ((1 − α)n) + cn, where α is a
constant in the range 0 < α < 1 and c > 0 is also a constant.

Let α ≥ 1− α. Figure below ilustrates the recursion tree T (n) = T (αn) + T ((1− αn)n) + cn.

If it were a complete tree, all the log1−α n levels would cost cn and the entire tree cn log1−α n. Thus, T (n) = O(n log1−α n) =
O(n lgn). The tree is complete until level log1/(1−α) n. The cost of the tree from the root to level log1/(1−α) n is

log1/(1−α) n∑
i=0

cn =

log1/(1−α) n∑
i=1

cn

+ cn = cn(log1/(1−α) n) + cn,

which is Ω(n log1/(1−α) n) = Ω(n lgn).

Lets verify with the substitution method. Our guess for an upper bound is

T (n) ≤ dn lgn ∀n ≥ n0,

where d and n0 are positive constants. Substituting into the recurrence yields

T (n) ≤ dαn lg(αn) + d(1− α)n lg((1− α)n) + dn

= dαn lgα+ dαn lgn+ d(1− α)n lg(1− α) + d(1− α)n lgn+ cn

= dαn lgα+ dαn lgn+ d(1− α)n lg(1− α) + dn lgn− dαn lgn+ cn

= dn lgn+ dn(α lgα+ (1− α) lg(1− α)) + cn

≤ dn lgn,

where the last step holds as long as d(α lgα+ (1− α) lg(1− α)) + c ≤ 0.

Our guess for a lower bound is
T (n) ≥ dn lgn ∀n ≥ n0,

where d, and n0 are positive constants. Substituting into the recurrence yields

T (n) ≥ dαn lg(αn) + d(1− α)n lg((1− α)n) + dn

= dαn lgα+ dαn lgn+ d(1− α)n lg(1− α) + d(1− α)n lgn+ cn

= dαn lgα+ dαn lgn+ d(1− α)n lg(1− α) + dn lgn− dαn lgn+ cn

= dn lgn+ dn(α lgα+ (1− α) lg(1− α)) + cn

≥ dn lgn,

where the last step holds as long as d(α lgα+ (1− α) lg(1− α)) + c ≥ 0.

40

CLRS – Chapter 4 – Divide-and-Conquer Daniel Bastos Moraes

4.5 The master method for solving recurrences

4.5-1 Use the master method to give tight asymptotic bounds for the following recurrences.

a. T (n) = 2T (n/4) + 1.

b. T (n) = 2T (n/4) +
√
n.

c. T (n) = 2T (n/4) + n.

d. T (n) = 2T (n/4) + n2.

(a) Case 1 applies. T (n) = Θ(nlog4 2) = Θ(
√
n).

(b) Case 2 applies. T (n) = Θ(nlog4 2 lgn) = Θ(
√
n lgn).

(c) Case 3 applies. T (n) = Θ(n).

(d) Case 3 applies. T (n) = Θ(n2).

4.5-2 Professor Caesar wishes to develop a matrix-multiplication algorithm that is asymptotically faster than Strassen’s algorithm.
His algorithm will use the divide-and-conquer method, dividing each matrix into pieces of size n/4 × n/4, and the divide and
combine steps together will take Θ(n2) time. He needs to determine how many subproblems his algorithm has to create in order
to beat Strassen’s algorithm. If his algorithm creates a subproblems, then the recurrence for the running time T (n) becomes
T (n) = aT (n/4) + Θ(n2). What is the largest integer value of a for which Professor Caesar’s algorithm would be asymptotically
faster than Strassen’s algorithm?

Strassen’s algorithm costs Θ(nlg 7). The cost of T (n) is stated below.

• If a < 16, Case 3 applies. T (n) = Θ(n2) = o(nlg 7).

• If a = 16, Case 2 applies. T (n) = Θ(n2 lgn) = o(nlg 7).

• If a > 16, Case 1 applies. T (n) = Θ(nlog4 a) = o(nlg 7) when a < 49.

Thus, the largest integer value of a is 48.

4.5-3 Use the master method to show that the solution to the binary-search recurrence T (n) = T (n/2) + Θ(1) is T (n) = Θ(lgn). (See
Exercise 2.3-5 for a description of binary search.)

We have
nlogb a = nlg 1 = Θ(1) = f(n).

Thus, Case 2 applies. T (n) = Θ(lgn).

41

CLRS – Chapter 4 – Divide-and-Conquer Daniel Bastos Moraes

4.5-4 Can the master method be applied to the recurrence T (n) = 4T (n/2) + n2 lgn? Why or why not? Give an asymptotic upper
bound for this recurrence.

We have
f(n) = n2 lgn,

and
nlogb a = nlog2 4 = Θ(n2),

which is larger than f(n), but not polynomially larger. Thus, we cannot use the master method to solve this recurrence.

We can use a recursion tree to guess the cost of T (n) and verify with the substitution method. Figure below ilustrates the
recursion tree of T (n) = 4T (n/2) + n2 lgn.

Figure here.

The tree has lgn levels and the number of nodes at depth i is 4i. Each node at depth i has a cost c((n/2i)2) lg(n) =
1/4icn2 lgn. Thus, the total cost at depth i is 4i × 1/4icn2 lgn = cn2 lgn.

The cost of the entire tree is
lgn∑
i=0

cn2 lgn = O(n2 lg2 n).

Lets verify with the substitution method. Our guess is

T (n) ≤ cn2 lg2 n ∀n ≥ n0,

where c and n0 are positive constants. Substituting into the recurrence yields

T (n) ≤ 4c

((n
2

)2
lg2
(n

2

))
+ n2 lgn

= 4c

(
n2

4
lg
(n

2

)
lg
(n

2

))
+ n2 lgn

= cn2 lg
(n

2

)
lg
(n

2

)
+ n2 lgn

= cn2 lg
(n

2

)
lgn− cn2 lg

(n
2

)
+ n2 lgn

= cn2 lg2 n− cn2 lgn− cn2 lgn+ cn2 + n2 lgn

≤ cn2 lg2 n,

where the last step holds as long as c ≥ 1.

4.5-5 Consider the regularity condition af(n/b) ≥ cf(n) for some constant c < 1, which is part of case 3 of the master theorem. Give
an example of constants a ≥ 1 and b > 1 and a function f(n) that satisfies all the conditions in case 3 of the master theorem
except the regularity condition.

Let a = 1, b = 2, and f(n) = n cosn. We have

nlogb a = nlog2 1 = Θ(1),

which is polynomially smaller than f(n) and satisfies the primary condition of Case 3. However, we have

af
(n
b

)
≤ cf(n)→ n

2
cos
(n

2

)
≤ c(n cosn),

which is not valid for some constant c < 1 and all sufficiently large n since cos(·) is not monotonic. Thus, it satisfies the
primary condition of Case 3, but not the regularity condition

42

CLRS – Chapter 4 – Divide-and-Conquer Daniel Bastos Moraes

Problems

4-1 Recurrence examples
Give asymptotic upper and lower bounds for T (n) in each of the following recurrences. Assume that T (n) is constant for n ≥ 2.
Make your bounds as tight as possible, and justify your answers.

a. 2T (n/2) + n4.

b. T (7n/10) + n.

c. 16T (n/4) + n2.

d. 7T (n/3) + n2.

e. 7T (n/2) + n2.

f. 2T (n/4) +
√
n.

g. T (n− 2) + n2.

(a) We use the master method. Case 3 applies, since nlg 2 = n is polynomially smaller than f(n). Thus, T (n) = Θ(n4).

(b) We use the master method. Case 3 applies, since nlog10/7 1 = 1 is polynomially smaller than f(n). Thus, T (n) = Θ(n).

(c) We use the master method. Case 2 applies, since nlog4 14 = n2 = Θ(f(n)). Thus, T (n) = Θ(n2 lgn).

(d) We use the master method. Case 3 applies, since nlog3 7 is polynomially smaller than f(n). Thus, T (n) = Θ(n2).

(e) We use the master method. Case 1 applies, since nlg 7 is polynomially larger than f(n). Thus, T (n) = Θ(nlg 7).

(f) We use the master method. Case 2 applies, since nlog4 2 =
√
n = Θ(f(n)). Thus, T (n) = Θ(

√
n lgn).

(g) The recurrence has n/2 levels and depth i costs c(n− 2i)2. Thus, we have

T (n) =

n/2∑
i=0

c(n− 2i)2 =

n/2∑
i=0

c(n2 − 4ni+ 4i2) = c

n/2∑
i=0

n2 −
n/2∑
i=0

4ni+

n/2∑
i=0

4i2

 = Θ(n3)−Θ(n2) + Θ(n3) = Θ(n3).

43

CLRS – Chapter 4 – Divide-and-Conquer Daniel Bastos Moraes

4-2 Parameter-passing costs
Throughout this book, we assume that parameter passing during procedure calls takes constant time, even if an N -element array
is being passed. This assumption is valid in most systems because a pointer to the array is passed, not the array itself. This
problem examines the implications of three parameter-passing strategies:

1. An array is passed by pointer. Time = Θ(1).

2. An array is passed by copying. Time = Θ(N), where N is the size of the array.

3. An array is passed by copying only the subrange that might be accessed by the called procedure. Time = Θ(q − p + 1) if
the subarray A[p . . . q] is passed.

a. Consider the recursive binary search algorithm for finding a number in a sorted array (see Exercise 2.3-5). Give recurrences
for the worst-case running times of binary search when arrays are passed using each of the three methods above, and give
good upper bounds on the solutions of the recurrences. Let N be the size of the original problem and n be the size of a
subproblem.

b. Redo part (a) for the Merge-Sort algorithm from Section 2.3.1.

a. Binary search.

1. Array passed by pointer.
T (n) = T (n/2) + Θ(1). Case 2 of master method applies, since nlg 1 = 1 = f(n). Thus, T (n) = Θ(lgn).

2. Array passed by copying.
T (n) = T (n/2)+Θ(N) = T (n/4)+Θ(N)+Θ(N) = T (n/8)+Θ(N)+Θ(N)+Θ(N) = · · · =

∑lgn
i=0 Θ(N) = Θ(n lgn).

3. Subarray passed by copying.
T (n) = T (n/2) + Θ(n). Case 3 of master method applies, since nlg 1 = 1 is polynomially smaller than f(n).
Thus, T (n) = Θ(n).

b. Merge sort.

1. Array passed by pointer.
T (n) = T (bn/2c) + T (dn/2e) + Θ(n) ≈ 2T (n/2) + Θ(n). Case 2 of master method applies, since nlg 2 = n = f(n).
Thus, T (n) = Θ(n lgn).

2. Array passed by copying.
T (n) = 2T (n/2)+Θ(N) = 4T (n/4)+2Θ(N)+Θ(N) = 16T (n/8)+4Θ(N)+2Θ(N)+Θ(N) = · · · =

∑lgn
i=0 2iΘ(N) =

Θ(n2).

3. Subarray passed by copying.
T (n) = 2T (n/2) + Θ(n). Case 2 of master method applies, since nlg 2 = n = f(n). Thus, T (n) = Θ(n lgn).

44

CLRS – Chapter 4 – Divide-and-Conquer Daniel Bastos Moraes

4-3 More recurrence examples
Give asymptotic upper and lower bounds for T (n) in each of the following recurrences. Assume that T (n) is constant for
sufficiently small n. Make your bounds as tight as possible, and justify your answers.

a. T (n) = 4T (n/3) + n lgn.

b. T (n) = 3T (n/3) + n/ lgn.

c. T (n) = 4T (n/2) + n2√n.

d. T (n) = 3T (n/3− 2) + n/2.

e. T (n) = 2T (n/2) + n/ lgn.

f. T (n) = T (n/2) + T (n/4) + T (n/8) + n.

g. T (n) = T (n− 1) + 1/n.

h. T (n) = T (n− 1) + lgn.

i. T (n) = T (n− 2) + 1/ lgn.

j. T (n) =
√
nT (
√
n) + n.

a. We have f(n) = n lgn and nlgb a = nlog3 4. Since n lgn = O(nlog3(4)−0.2), case 1 applies and we have T (n) = Θ(nlog3 4).

b. The tree has log3 n levels and depth i, for i = 0, 1, . . . , log3 n− 1, costs n/(log3 n− i). The cost of the entire tree is

T (n) =

log3 n−1∑
i=0

n

log3 n− i
=

log3 n∑
i=1

n

i
= n

log3 n∑
i=1

1

i
= n ·Hlog3 n = n ·Θ(lg log3 n) = Θ(n lg lgn).

Skipped the proof.

c. We have f(n) = n2√n = n5/2 and nlogb a = nlog2 4 = n2. Since n5/2 = Ω(n2+1/2), we look at the regularity condition
in case 3 of the master method. We have af(n/b) = 4(n/2)2

√
n/2 = (n5/2)/

√
2 ≤ cn5/2 for 1/

√
2 ≤ c < 1. Case 3

applies and we have T (n) = Θ(n2√n).

d. The tree has log3 n levels and depth i, for i = 0, 1, . . . , log3 n− 1 costs c(n/2)− 2 · 3i. The cost of the entire tree is

T (n) =

log3 n−1∑
i=0

(
c
n

2
− 2 · 3i

)
= c

log3 n−1∑
i=0

n

2
− 2

log3 n−1∑
i=0

3i = Θ(n lgn).

Our guess for the upper bound is
T (n) ≤ cn lgn ∀n ≥ n0,

where c and n0 are positive constants. Substituting into the recurrence yields

T (n) ≤ 3c
(n

3
− 2
)

lg
(n

3
− 2
)

+
n

2

= cn lg
(n

3
− 2
)
− 6c lg

(n
3
− 2
)

+
n

2

≤ cn lg
(n

3
− 2
)
− 6c lg

(n
4

)
+
n

2
(n ≥ 24)

= cn lg
(n

3
− 2
)
− 6c lgn− 12c+

n

2

< cn lgn− 6c lgn− 12c+
n

2

≤ cn lgn,

where the last step holds as long as −6c lgn− 12c+ n/2 ≤ 0 (skipped simplification).

Our guess for the lower bound is
T (n) ≥ cn lgn ∀n ≥ n0,

where c, and n0 are positive constants. Substituting into the recurrence yields

T (n) ≥ 3c
(n

3
− 2
)

lg
(n

3
− 2
)

+
n

2

= cn lg
(n

3
− 2
)
− 6c lg

(n
3
− 2
)

+
n

2

≥ cn lg
(n

4

)
− 6c lg

(n
3
− 2
)

+
n

2
(n ≥ 24)

= cn lgn− 2cn− 6c lg
(n

3
− 2
)

+
n

2

≥ cn lgn,

where the last step holds as long as −2cn− 6c lg(n/3− 2) + n/2 ≥ 0 (skipped simplification).

45

CLRS – Chapter 4 – Divide-and-Conquer Daniel Bastos Moraes

e. The tree has lgn levels and depth i, for i = 0, 1, . . . , lgn− 1, costs n/(lgn− i). The cost of the entire tree is

T (n) =

lgn−1∑
i=0

n

lgn− i =

lgn∑
i=1

n

i
= n

lgn∑
i=1

1

i
= n ·Hlgn = n ·Θ(lg lgn) = Θ(n lg lgn).

Skipped the proof.

f. The tree has lgn levels, but is not complete. Considering only the levels in which the tree is complete, depth i, for
i = 1, 2, . . . , log8 n, costs (7/8)icn. Thus, the cost of the entire tree is at most

T (n) ≤
lgn−1∑
i=0

((
7

8

)i
cn

)
= cn

lgn−1∑
i=0

((
7

8

)i)
= cn

1−
(
7
8

)lgn
1− 7

8

= cn
1− nlg 7−3

1
8

= 8cn− 8cnlg 7−2 = O(n).

Our guess for the upper bound is
T (n) ≤ cn ∀n ≥ n0,

where c and n0 are positive constants. Substituting into the recurrence yields

T (n) ≤ cn
2

+ c
n

4
+ c

n

8

=
7

8
cn+ n

≤ cn,

where the last step holds as long as c ≥ 8.

Our guess for the lower bound is
T (n) ≥ cn ∀n ≥ n0,

where c and n0 are positive constants. Substituting into the recurrence yields

T (n) ≥ cn
2

+ c
n

4
+ c

n

8

=
7

8
cn+ n

≥ cn,

where the last step holds as long as c ≤ 8.

g. The tree has n levels and depth i, for i = 1, 2, . . . , n− 1, costs 1/(n− i). The cost of the entire tree is

n−1∑
i=0

1

n− i =

n∑
i=1

1

i
= Hn = Θ(lgn).

Skipped the proof.

h. The tree has n levels and depth i, for i = 1, 2, . . . , n− 1, costs lg(n− i). The cost of the entire tree is

n−1∑
i=0

lg(n− i) =

n∑
i=1

lg i = lg(n!) = Θ(n lgn).

Skipped the proof.

i. Skipped.

j. Skipped.

46

CLRS – Chapter 4 – Divide-and-Conquer Daniel Bastos Moraes

4-4 Fibonacci numbers
This problem develops properties of the Fibonacci numbers, which are defined by recurrence (3.22). We shall use the technique
of generating functions to solve the Fibonacci recurrence. Define the generating function (or formal power series) F as

F(z) =

∞∑
i=0

Fiz
i = 0 + z + z2 + 2z3 + 3z4 + 5z5 + 8z6 + 13z7 + 21z8 + . . . ,

where Fi is the ith Fibonacci number.

a. Show that F(z) = z + zF(z) + z2F(z).

b. Show that
F(z) =

z

1− z − z2

=
z

(1− φz)(1− φ̂z)

=
1√
5

(
1

1− φz −
1

1− φ̂z

)
,

where

φ =
1 +
√

5

2
= 1.61803 . . .

and

φ̂ =
1−
√

5

2
= 0.61803

c. Show that

F(z) =
∞∑
i=0

1√
5

(φi − φ̂i)zi.

d. Use part (c) to prove that Fi = φi/
√

5 for i > 0, rounded to the nearest integer.
(Hint: Observe that |φ̂| < 1.)

a.

F(z) =

∞∑
i=0

Fiz
i

= 0 + z +

∞∑
i=2

(F(i−1) + F(i−2))z
i

= z +

∞∑
i=2

F(i−1)z
i +

∞∑
i=2

F(i−2)z
i

= z +

∞∑
i=1

Fiz
i+1 +

∞∑
i=0

Fiz
i+2

= z +

∞∑
i=0

Fiz
i+1 +

∞∑
i=0

Fiz
i+2 (since F0 = 0)

= z + z

∞∑
i=0

Fiz
i + z2

∞∑
i=0

Fiz
i

= z + zF(z) + z2F(z).

47

CLRS – Chapter 4 – Divide-and-Conquer Daniel Bastos Moraes

b.

F(z) = F(z) · 1− z − z2

1− z − z2

=
F(z)− zF(z)− z2F(z)

1− z − z2

=
F(z)− (z + zF(z) + z2F(z)) + z

1− z − z2

=
F(z)−F(z) + z

1− z − z2 (from previous proof)

=
z

1− z − z2

=
z

1− (φ+ φ̂)z + φφ̂z2
(since φ+ φ̂ = 1 and φφ̂ = −1)

=
z

(1− φz)(1− φ̂z)

=
1√
5

(
1

1− φz −
1

1− φ̂z

)
. (skipped this proof)

c.

F(n) =
1√
5

(
1

1− φz −
1

1− φ̂z

)
=

1√
5

(
∞∑
i=0

(φz)i −
∞∑
i=0

(φ̂z)i
)

(by equation A.6, geometric series)

=
1√
5

∞∑
i=0

(
(φz)i − (φ̂z)i

)
=

∞∑
i=0

1√
5

(φi − φ̂i)zi.

d. Skipped.

48

CLRS – Chapter 4 – Divide-and-Conquer Daniel Bastos Moraes

4-5 Chip testing
Professor Diogenes has n supposedly identical integrated-circuit chips that in principle are capable of testing each other. The
professor’s test jig accommodates two chips at a time. When the jig is loaded, each chip tests the other and reports whether it
is good or bad. A good chip always reports accurately whether the other chip is good or bad, but the professor cannot trust the
answer of a bad chip. Thus, the four possible outcomes of a test are as follows:

Chip A says Chip B says Conclusion

B is good A is good both are good, or both are bad
B is good A is bad at least one is bad
B is bad A is good at least one is bad
B is bad A is bad at least one is bad

a. Show that if at least n/2 chips are bad, the professor cannot necessarily determine which chips are good using any strategy
based on this kind of pairwise test. Assume that the bad chips can conspire to fool the professor.

b. Consider the problem of finding a single good chip from among n chips, assuming that more than n/2 of the chips are good.
Show that bn/2c pairwise tests are sufficient to reduce the problem to one of nearly half the size.

c. Show that the good chips can be identified with Θ(n) pairwise tests, assuming that more than n/2 of the chips are good.
Give and solve the recurrence that describes the number of tests.

a. Let ng be the number of good chips and nb the number of bad chips, such that nb ≥ ng and ng + nb = n. If the bad
chips decide evaluate the others incorrectly (good as bad and bad as good), the professor will have the following result:

Chip state Tested as good Tested as bad

Good ng − 1 times nb times
Bad nb − 1 times ng times

In this jig test, the number of good tests of the bad chips will be equal or greater the number of good tests of the good
chips, which will confuse the professor.

b. Group the chips in groups of two (if n is odd, put the remaining chip in the next subproblem), making a total of bn/2c
groups, and evaluate each group in the test jig. For each test, do the following:

Group type Chip A says Chip B says Conclusion

1 B is good A is good keep one of them
2 B is good A is bad discard both
3 B is bad A is good discard both
4 B is bad A is bad discard both

For each test where at least one of the chips is evaluated as bad (group types 2, 3, and 4), we known that at least one
of them is truly bad. Thus, we can safely discard both and assure that the majority of the remaining chips are good.
As for the groups where both of the chips are evaluated as good (group type 1), we can assure that at least half of
these groups are composed by truly good chips, thus keeping one of them is enough to assure that the subproblem will
have at least half of good chips. The case where exactly half of the groups of type 1 is composed by good chips only
can happen when n is odd and the remaining chip that we previously added to the subproblem must be good, thus
assuring that the majority of the chips from the subproblem is good. Also, since the number of groups is bn/2c, the
algorithm will perform bn/2c tests and the subproblem will have at most dn/2e chips.

c. The recurrence of the above algorithm is

T (n) = T
(⌈n

2

⌉)
+
n

2
.

We have that f(n) = n/2 and nlogb a = nlog2 1 = n0 = 1. Since n/2 = Ω(n0+0.5), we look at the regularity condition
in case 3 of masther method. We have af(n/b) = n/4 ≤ cn/2 for 1/2 ≤ c < 1. Case 3 applies and we have
T (n) = Θ(n/2) = Θ(n).

49

CLRS – Chapter 4 – Divide-and-Conquer Daniel Bastos Moraes

4-6 Monge arrays
An m× n array A of real numbers is a Monge array if for all i, j, k, and l such that 1 ≤ i < k ≤ m and 1 ≤ j < l ≤ n, we have

A[i, j] +A[k, l] ≤ A[i, l] +A[k, j].

In other words, whenever we pick two rows and two columns of a Monge array and consider the four elements at the intersections
of the rows and the columns, the sum of the upper-left and lower-right elements is less than or equal to the sum of the lower-left
and upper-right elements. For example, the following array is Monge:

10 17 13 28 23
17 22 16 29 23
24 28 22 34 24
11 13 6 17 7
45 44 32 37 23
36 33 19 21 6
75 66 51 53 34

a. Prove that an array is Monge if and only if for all i = 1, 2, . . . ,m− 1 and j = 1, 2, . . . , n− 1, we have:

A[i, j] +A[i+ 1, j + 1] ≤ A[i, j + 1] +A[i+ 1, j].

(Hint: For the “if” part, use induction separately on rows and columns.)

b. The following array is not Monge. Change one element in order to make it Monge. (Hint: Use part(a).)

37 23 22 32
21 6 7 10
53 34 30 31
32 13 9 6
43 21 15 8

c. Let f(i) be the index of the column containing the leftmost minimum element of row i. Prove that f(1) ≤ f(2) ≤ · · · ≤ f(m)
for any m× n Monge array.

d. Here is a description of a divide-and-conquer algorithm that computes the leftmost minimum element in each row of an
m× n Monge array A:

Construct a submatrix A′ of A consisting of the even-numbered rows of A. Recursively determine the leftmost
minimum for each row of A′. Then compute the leftmost minimum in the odd-numbered rows of A.

Explain how to compute the leftmost minimum in the odd-numbered rows of A (given that the leftmost minimum of the
even-numbered rows is known) in O(m+ n) time.

e. Write the recurrence describing the running time of the algorithm described in part (d). Show that it is O(m+ n logm).

a. The “only if” part is trivial. Since k = i+ 1, . . . ,m and l = j + 1, . . . , n, we have

A[i, j] +A[k, l] ≤ A[i, l] +A[k, j]→ A[i, j] +A[i+ 1, j + 1] ≤ A[i, j + 1] +A[i+ 1, j],

For the “if” part, we first need to show

A[i, j] +A[i+ 1, j + 1] ≤ A[i, j + 1] +A[i+ 1, j]→ A[i, j] +A[k, j + 1] ≤ A[i, j + 1] +A[k, j] (4.1)

is valid for all k > i. The base case, which occurs when k = i+ 1, is given. Thus, we have

A[k, j] +A[k + 1, j + 1] ≤ A[k, j + 1] +A[k + 1, j].

in which k = i+ 1, . . . ,m− 1. Now assume that the rhs of (1) holds for a given k

A[i, j] +A[k, j + 1] ≤ A[i, j + 1] +A[k, j],

then we have

A[i, j] +A[k, j + 1]︸ ︷︷ ︸
assumption

+A[k, j] +A[k + 1, j + 1]︸ ︷︷ ︸
base case

≤ A[i, j + 1] +A[k, j]︸ ︷︷ ︸
assumption

+A[k, j + 1] +A[k + 1, j]︸ ︷︷ ︸
base case

,

cancelling equal terms on both sides, we have

A[i, j] +A[k + 1, j + 1] ≤ A[i, j + 1] +A[k + 1, j],

which shows that it also holds for k + 1 and proves the inductive step.

50

CLRS – Chapter 4 – Divide-and-Conquer Daniel Bastos Moraes

Then we need to show

A[i, j] +A[i+ 1, j + 1] ≤ A[i, j + 1] +A[i+ 1, j]→ A[i, j] +A[i+ 1, l] ≤ A[i, l] +A[i+ 1, j] (4.2)

is valid for all l > j. The base case, which occurs when l = j + 1, is given. Thus, we have

A[i, l] +A[i+ 1, l + 1] ≤ A[i, l + 1] +A[i+ 1, l].

in which l = j + 1, . . . , n− 1. Now assume that the rhs of (2) holds for a given l

A[i, j] +A[i+ 1, l] ≤ A[i, l] +A[i+ 1, j],

then we have

A[i, j] +A[i+ 1, l]︸ ︷︷ ︸
assumption

+A[i, l] +A[i+ 1, l + 1]︸ ︷︷ ︸
base case

≤ A[i, l] +A[i+ 1, j]︸ ︷︷ ︸
assumption

+A[i, l + 1] +A[i+ 1, l]︸ ︷︷ ︸
base case

,

cancelling equal terms on both sides, we have

A[i, j] +A[i+ 1, l + 1] ≤ +A[i, l + 1] +A[i+ 1, j],

which shows that it also holds for l + 1 and proves the inductive step.

From the “if” and “only if” proofs, we have

A[i, j] +A[k, l] ≤ A[i, l] +A[k, j] ⇐⇒ A[i, j] +A[i+ 1, j + 1] ≤ A[i, j + 1] +A[i+ 1, j].

b. Let M be the m× n matrix we want to make Monge. In this case, m = 5 and n = 4. From item (a), we know that, to
be Monge, the following needs to hold:

M [i, j] +M [i+ 1, j + 1] ≤M [i, j + 1] +M [i+ 1, j] ∀ i = 1, 2, . . . ,m− 1 ∀ j = 1, 2, . . . , n− 1,

which implies

M [i, j] +M [i+ 1, j + 1]−M [i, j + 1] +M [i+ 1, j] ≤ 0.

Let K be an (m− 1)× (n− 1) matrix where

K[i, j] = M [i, j] +M [i+ 1, j + 1]−M [i, j + 1] +M [i+ 1, j].

Thus, we have

K =

−1 2 −7
−4 −5 −2
0 0 −4
−3 −2 −4

 ,
which shows that the problem is that M [1, 2] +M [2, 3]−M [1, 3] +M [2, 2] = 2 > 0.

We can make M monge by changing the element M [1, 3] from 22 to 24, now becoming:

M =

37 23 24 32
21 6 7 10
53 34 30 31
32 13 9 6
43 21 15 8

 .

c. Lets assume that f(i+ 1) < f(i). From the definition of a Monge array, we have

A[i, f(i+ 1)] +A[i+ 1, f(i)] ≤ A[i, f(i)] +A[i+ 1, f(i+ 1)],

which is not possible since from the definition of f(·)

A[i, f(i+ 1)] > A[i, f(i)],

and

A[i+ 1, f(i)] ≥ A[i+ 1, f(i+ 1)].

51

CLRS – Chapter 4 – Divide-and-Conquer Daniel Bastos Moraes

d. We know from item (c) that f(i− 1) ≤ f(i) ≤ f(i+ 1). Thus, for each odd-numbered row i of the matrix, we just need
to find the leftmost minimum of row i between the columns f(i− 1) and f(i+ 1), which includes f(i+ 1)− f(i− 1) + 1
elements. If i corresponds to the first (i = 1) or the last (i = m) row of the matrix, consider f(i − 1) = f(0) = 1 or
f(i + 1) = f(m + 1) = m. Since the matrix has dm/2e odd-numbered rows, finding the leftmost minimum of all of
them takes

dm/2e∑
i=1

(f(i+ 1)− f(i− 1) + 1) =
⌈m

2

⌉
+

dm/2e∑
i=1

(f(i+ 1)− f(i− 1))

= O(m) + f(dm/2e)− f(1)

= O(m+ n).

e. Since we can partition the array in O(1) (working with pointers), the recurrence can be written as

T (m) = T (m/2) +O(m+ n)

=

lgm−1∑
i=0

(
cn+ d

m

2i

)

= cn lgm+ dm

lgm−1∑
i=0

1

2i

≤ cn lgm+ dm

∞∑
i=0

(1/2)i (infinity decreasing geometric series)

= cn lgm+ dm

(
1

1− (1/2)

)
= cn lgm+ 2dm

= O(m+ n lgm).

52

CLRS – Chapter 5 – Probabilistic Analysis and Randomized Algorithms Daniel Bastos Moraes

Probabilistic Analysis and Randomized Algorithms

5.1 The hiring problem

5.1-1 Show that the assumption that we are always able to determine which candidate is best, in line 4 of procedure Hire-Assistant,
implies that we know a total order on the ranks of the candidates.

Let A be the set of candidates in random order and R the binary relation “is better than or equal”. R is a total order if

(a) R is reflexive. That is, a R a ∀ a ∈ A;

(b) R is antisymmetric. That is, a R b and b R a imply a = b;

(c) R is transitive. That is, a R b and b R c imply a R c;

(d) R is a total relation. That is, a R b or b R a ∀ a, b ∈ A.

The above properties are necessary because

(a) if two different candidates have the same qualification, it is necessary so that they can be compared;

(b) if both a is “better than or equal” than b and b is “better than or equal” than a and they qualifications are not equal,
we would not be able to choose one of them and still be hiring “the best candidate we have seen so far”;

(c) if we hire b because he is “better than or equal” than a and then we hire c because he is “better than or equal” than b
and c is not “better than or equal” than a, we are not hiring “the best candidate we have seen so far”;

(d) if R is not a total relation, we would not be able to compare any two candidates.

5.1-2 (?) Describe an implementation of the procedure Random(a, b) that only makes calls to Random(0, 1). What is the expected
running time of your procedure, as a function of a and b?

The pseudocode is stated below.

1 RandomInterval(a, b)
33 flips = dlg(b− a)e
55 count =∞
77 while count > b do
99 count = 0

1111 for i = 1 to flips do
1313 count = count+ (2i−1 · Random(0, 1))

1515 return count+ a

The expected running time is
2dlg(b−a)e/(b− a)︸ ︷︷ ︸

while loop

· dlg(b− a)e︸ ︷︷ ︸
for loop

< 2 · dlg(b− a)e,

where the last inequality is valid since 1 ≤ 2dlg(b−a)e/(b− a) < 2.

5.1-3 (?) Suppose that you want to output 0 with probability 1/2 and 1 with probability 1/2. At your disposal is a procedure Biased-
Random, that outputs either 0 or 1. It outputs 1 with some probability p and 0 with probability 1− p, where 0 < p < 1, but you
do not know what p is. Give an algorithm that uses Biased-Random as a subroutine, and returns an unbiased answer, returning
0 with probability 1/2 and 1 with probability 1/2. What is the expected running time of your algorithm as a function of p?

The pseudocode is stated below.

1 Random()
33 while 1 do
55 r1 = Random(0, 1)
77 r2 = Random(0, 1)
99 if r1 6= r2 then

1111 return r1

The expected running time is
1

(1− p)p︸ ︷︷ ︸
(r1, r2) = (0, 1)

+ p(1− p)︸ ︷︷ ︸
(r1, r2) = (1, 0)

· 1 =
1

2p(1− p) .

53

CLRS – Chapter 5 – Probabilistic Analysis and Randomized Algorithms Daniel Bastos Moraes

5.2 Indicator random variables

5.2-1 In Hire-Assistant, assuming that the candidates are presented in a random order, what is the probability that you hire exactly
one time? What is the probability that you hire exactly n times?

Since the initial dummy candidate is the least qualified, Hire-Assistant will always hire the first candidate. It hires exacly
one time when the best candidate is the first to be interviewed. Thus, the probability is 1/n. To hire exactly n times, the
candidates has to be in increasing order of quality. Since there are n! possible orderings (each one with equal probability of
happening), the probability is 1/n!.

5.2-2 In Hire-Assistant, assuming that the candidates are presented in a random order, what is the probability that you hire exactly
twice?

The first candidate is always hired, thus the best qualified candidate cannot be the first to be interviewed. Also, among all
the candidates that are better qualified than the first candidate, the best candidate must be interviewed first. Otherwise, a
third candidate will be hired between them. Now assume that the first candidate to be interviewed is the ith best qualified,
for i = 2, . . . , n. This occurs with a probability of 1/n. To hire exactly twice, the best candidate must be the first to be
interviewed among the i−1 candidates that are better qualified than candidate i. This occurs with a probability of 1/(i−1).
Thus, the probability of hiring exactly twice is

n∑
i=2

1

n

1

i− 1
=

1

n

n−1∑
i=1

1

i
=

1

n
(lg(n− 1) +O(1)).

5.2-3 Use indicator random variables to compute the expected value of the sum of n dice.

Let Xi be an indicator random variable of a dice coming up the number i. We have Pr{Xi} = 1/6. Let X be a random
variable denoting the result of throwing a dice. Then

E[X] =

6∑
i=1

i · Pr{Xi} =

6∑
i=1

i · 1

6
=

1

6

6∑
i=1

i =
1

6

6 · 7
2

= 3.5.

By linearity of expectations, the expected value of the sum of n dice is the sum of the expected value of each dice. Thus,

n∑
i=1

E[X] =

n∑
i=1

3.5 = 3.5 · n.

5.2-4 Use indicator random variables to solve the following problem, which is known as the hat-check problem . Each of n customers
gives a hat to a hat-check person at a restaurant. The hat-check person gives the hats back to the customers in a random order.
What is the expected number of customers who get back their own hat?

Let Xi be an indicator random variable of customer i getting back his own hat. We have

Pr{Xi} = E[Xi] = 1/n.

Let X be a random variable denoting the number of customers who get back their own hat. Then

X = X1 +X2 + · · ·+Xn,

which implies

E[X] = E

[
n∑
i=1

Xi

]

=

n∑
i=1

E[Xi]

=

n∑
i=1

1

n

= 1.

54

CLRS – Chapter 5 – Probabilistic Analysis and Randomized Algorithms Daniel Bastos Moraes

5.2-5 Let A[1, . . . , n] be an array of n distinct numbers. If i < j and A[i] > A[j], then the pair (i, j) is called an inversion of A. (See
Problem 2-4 for more on inversions.) Suppose that the elements of A form a uniform random permutation of 〈1, 2, . . . , n〉. Use
indicator random variables to compute the expected number of inversions.

Let Xij be an indicator random variable for the event that the pair (i, j) is inverted. Since A forms a uniform random
permutation, we have

Pr{Xij} = Pr{Xij} = 1/2,

which implies
E[Xij] = 1/2.

Let X be a random variable denoting the number of inversions of A. Since there are
(
n
2

)
possible pairs on A, each with

probability 1/2 of being inverted, we have

E[X] =

(
n

2

)
1

2
=

n!

2! · (n− 2)!

1

2
=
n(n− 1)

4
.

55

CLRS – Chapter 5 – Probabilistic Analysis and Randomized Algorithms Daniel Bastos Moraes

5.3 Randomized algorithms

5.3-1 Professor Marceau objects to the loop invariant used in the proof of Lemma 5.5. He questions whether it is true prior to the
first iteration. He reasons that we could just as easily declare that an empty subarray contains no 0-permutations. Therefore,
the probability that an empty subarray contains a 0-permutation should be 0, thus invalidating the loop invariant prior to the
first iteration. Rewrite the procedure Randomize-In-Place so that its associated loop invariant applies to a nonempty subarray
prior to the first iteration, and modify the proof of Lemma 5.5 for your procedure.

Just select a random element in the array and swap it with the first element.

1 Randomize-In-Place(A)
33 n = A.length
55 swap A[1] with A[Random(1, n)]
77 for i = 2 to n− 1 do
99 swap A[i] with A[Random(i, n)]

The only difference in the proof of Lemma 5.5 is the initialization of the loop invariant:

• Initialization. Consider the situation just before the first loop iteration, so that i = 2. The loop invariant says that
for each possible 1-permutation, the subarray A[1, . . . , 1] contains this 1-permutation with probability (n− i+ 1)/n! =
(n− 1)!/n! = 1/n. The subarray A[1, . . . , 1] has a single element and this element was randomly choosed among the n
elements of the array. Thus, A[1, . . . , 1] contains this 1-permutation with probability 1/n, and the loop invariant holds
prior to the first iteration.

5.3-2 Professor Kelp decides to write a procedure that produces at random any permutation besides the identity permutation. He
proposes the following procedure:

1 Permute-Without-Identity(A)
33 n = A.length
55 for i = 1 to n− 1 do
77 swap A[i] with A[Random(i+ 1, n)]

Does this code do what Professor Kelp intends?

No. This code enforces that every position i of the resulting array receives an element that is different from the ith element
of the original array. However, this requirement discards much more permutations than just the identity permutation. For
instance, consider the array A = [1, 2, 3] and a permutation of it A′ = [1, 3, 2]. In this case, the permutation A′ is not
identical to the original array A. However, Professor Kelp’s code is not able to produce this permutation.

5.3-3 Suppose that instead of swapping element A[i] with a random element from the subarray A[i, . . . , n], we swapped it with a random
element from anywhere in the array:

1 Permute-With-All(A)
33 n = A.length
55 for i = 1 to n do
77 swap A[i] with A[Random(1, n)]

Does this code produce a uniform random permutation? Why or why not?

No. As a counterexample, consider the input array A = [1, 2, 3]. Since each call to Random can produce one of three values,
the number of possible outcomes after all the Random calls can be seen as the number of strings over the set {1, 2, 3},
which is 33 = 27. However, since an array of size 3 has 3! = 6 distinct permutations, and 27 is not divisible by 6, it is not
possible that each of the 6 permutations of A has the same probability of happening among the 27 possible outcomes of
Permute-With-All.

56

CLRS – Chapter 5 – Probabilistic Analysis and Randomized Algorithms Daniel Bastos Moraes

5.3-4 Professor Armstrong suggests the following procedure for generating a uniform random permutation:

1 Permute-By-Cyclic(A)
33 n = A.length
55 let B[1 . . . n] be a new array
77 offset = Random(1, n)
99 for i = 1 to n do

1111 dest = i+ offset
1313 if dest > n then
1515 dest = dest −n
1717 B[dest] = A[i]

Show that each element A[i] has a 1/n probability of winding up in any particular position in B. Then show that Professor
Armstrong is mistaken by showing that the resulting permutation is not uniformly random.

What Professor Armstrong’s code does is a circular shift of all the elements to the right by i positions. Since each of the
n possible shifts has the same probability of happening, each element has indeed a probability of 1/n of winding up in any
particular position of the final array B. However, since this code has only n possible outcomes and A has n! permutations,
it can not produce a uniform random distribution over A. More precisely, the Professor Armstrong’s code is not able to
produce any permutation of A that is not a circular shift of A.

5.3-5 (?) Prove that in the array P in procedure Permute-By-Sorting, the probability that all elements are unique is at least 1−1/n.

Let Xi be an indicador random variable for the event that the ith priority is not unique. Since the subarray P [1, . . . , i− 1]
has at most i − 1 distinct numbers, we have Pr{Xi} = E[Xi] ≤ (i − 1)/n3. Let X be a random variable for the event that
at least one priority is not unique. Then

X = (X1 ∪X2 ∪ · · ·Xn) = X1 +X2 + · · ·+Xn,

which implies

E[X] = E

[
n∑
i=1

Xi

]

=

n∑
i=1

E[Xi]

≤
n∑
i=1

i− 1

n3

=
1

n3

n−1∑
i=0

i

=
1

n3

(n− 1) · n
2

=
n− 1

2n2

≤ 1

n
.

Thus, the probability that all elements are unique is

E[X] = 1− E[X] ≥ 1− 1

n
.

57

CLRS – Chapter 5 – Probabilistic Analysis and Randomized Algorithms Daniel Bastos Moraes

5.3-6 Explain how to implement the algorithm Permute-By-Sorting to handle the case in which two or more priorities are identical.
That is, your algorithm should produce a uniform random permutation, even if two or more priorities are identical.

The pseudocode is stated below.

1 Permute-By-Sorting-Unique(A)
33 n = A.length
55 let P [1 . . . n] be a new array
77 repeat
99 for i = 1 to n do

1111 P [i] = Random(1, n3)

1313 let Q be a copy of P
1515 sort Q
1717 unique = True
1919 for i = 2 to n do
2121 if Q[i] == Q[i− 1] then
2323 unique = False
2525 break

26 until unique
2828 sort A, using P as sort keys

Before sorting A using P as sort keys, the above algorithm verifies if P has unique priorities. If the priorities are not unique,
P is generated again until it has unique priorities. Since the probability that a random P is unique is at least 1− 1/n, the
expected number of iterations of the repeat loop of lines 3-12 is less than 2.

58

CLRS – Chapter 5 – Probabilistic Analysis and Randomized Algorithms Daniel Bastos Moraes

5.3-7 Suppose we want to create a random sample of the set {1, 2, 3, . . . , n}, that is, an m-element subset S, where 0 ≤ m ≤ n, such
that each m-subset is equally likely to be created. One way would be to set A[i] = i for i = 1, 2, 3, . . . , n, call Randomized-In-
Place(A), and then take just the first m array elements. This method would make n calls to the Random procedure. If n is
mucn larger than m, we can create a random sample with fewer calls to Random. Show that the following recursive procedure
returns a random m-subset S of {1, 2, 3, . . . , n}, in which each m-subset is equally likely, while making only m calls to Random:

1 Random-Sample(m, n)
33 if m == 0 then
55 return ∅
77 else
99 S = Random-Sample(m− 1, n− 1)

1111 i = Random(1, n)
1313 if i ∈ S then
1515 S = S ∪ {n}
1717 else
1919 S = S ∪ {i}
2121 return S

The recursion has m + 1 levels. Let Rk, for k = 0, 1, . . . ,m, denote the recursion at depth k, in which an k-subset is
returned (R0 returns the empty set; Rm returns the final m-subset). After Rk, S will consist of k elements from the set
{1, 2, . . . , n− (m− k)}. There are

(
n−(m−k)

k

)
ways to choose k elements from an (n− (m− k))-set. Thus, to S be a random

sample, we wish to show that, in each recursion level k, this particular k-subset is selected with probability 1/
(
n−(m−k)

k

)
.

For the base case of the recursion, which occurs when k = 0, there are
(
n−m

0

)
= 1 distincts 0-subsets and the algorithm

returns the empty set with probability 1 = 1/
(
n−m

0

)
. Now assume Rk−1 returns an random (k − 1)-sample. There are two

ways to add the kth element to S on Rk:

• The element n− (m− k) is added. This occurs when line 5 either selects the element n− (m− k) or an element e such
that e ∈ Rk−1. This probability is

1

n− (m− k)︸ ︷︷ ︸
(n− (m− k)) is selected

+
k − 1

n− (m− k)︸ ︷︷ ︸
e ∈ Rk−1 is selected

=
k

n− (m− k)
.

Thus, Rk produces a particular k-sample with the element n− (m− k) with probability

k

n− (m− k)
· 1(

n−(m−k)−1
k−1

) =
k

n− (m− k)
·
(

(n− (m− k)− 1)!

(k − 1)! · (n− (m− k)− 1− (k − 1))

)−1

=

(
(n− (m− k))!

k! · (n− (m− k)− k)

)−1

=
1(

n−(m−k)
k

) .
• An element j < n− (m− k) is added. The probability of line 5 selecting such element is

n− (m− k)− k
n− (m− k)

=
n−m

n− (m− k)
.

Thus, Rk produces a particular k-sample with the element j with probability

n−m
n− (m− k)

· 1(
n−(m−k)−1

k

) =
n−m

n− (m− k)
·
(

(n− (m− k)− 1)!

k! · (n− (m− k)− 1− k)

)−1

=

(
(n− (m− k))!

k! · (n− (m− k)− k)

)−1

=
1(

n−(m−k)
k

) .
Since each recursion level Rk such that k > 0 makes exactly one call to Random, there are m such calls. Also, among the(
n
m

)
ways of choosing m elements from an n-set, Random-Sample returns each of them with probability

1(
n−(m−m)

m

) =
1(
n
m

) .

59

CLRS – Chapter 5 – Probabilistic Analysis and Randomized Algorithms Daniel Bastos Moraes

Problems

5-1 Probabilistic counting
With a b-bit counter, we can ordinarily only count up to 2b − 1. With R. Morri’s probabilistic counting , we can count up to a
much larger value at the expense of some loss of precision.

We let a counter value of i represent a count of ni for i = 0, 1, . . . , 2b−1, where the ni form an increasing sequence of nonnegative
values. We assume that the initial value of the counter is 0, representing a count of n0 = 0. The Increment operation works on
a counter containing the value i in a probabilistic manner. If i = 2b− 1, then the operation reports an overflow error. Otherwise,
the Increment operation increases the counter by 1 with probability 1/(ni+1 − ni).
If we select ni = i for all i ≥ 0, then the counter is an ordinary one. More interesting situations arise if we select, say, ni = 2i−1

for i > 0 or ni = Fi (the ith Fibonacci number – see Section 3.2).

For this problem, assume n2b−1 is large enough that the probability of an overflow error is negligible.

a. Show that the expected value represented by the counter after n Increment operations have been performed is exactly n.

b. The analysis of the variance of the count represented by the counter depends on the sequence of the ni. Let us consider
a simple case: ni = 100i for all i ≥ 0. Estimate the variance in the value represented by the register after n Increment
operations have been performed.

(a) Let Xi denote a random variable for the expected increment of the count represented by a counter of value i after one
Increment operation. We have

E[Xi] = 0 ·
(

1− 1

ni+1 − ni

)
+ (ni+1 − ni) ·

1

ni+1 − ni
= 1,

which shows that, independently from the current state of the counter, the expected increment of the count after each
Increment operation is always 1. Thus, after n Increment operations, the expected count is:

n∑
i=1

E[X0] =

n∑
i=1

1 = n,

(b) We have

Var[Xi] = E[Xi
2]− E2[Xi]

=

(
02 ·

(
1− 1

100

)
+ 1002 · 1

100

)
− 1

= 99,

which shows that the estimated variance after each Increment operation does not depend on the current state of the
counter. Thus, after n Increment operations, the estimated variance is

n∑
i=1

Var[X0] =

n∑
i=1

99 = 99n.

60

CLRS – Chapter 5 – Probabilistic Analysis and Randomized Algorithms Daniel Bastos Moraes

5-2 Searching an unsorted array
This problem examines three algorithms for searching for a value x in an unsorted array A consisting of n elements.

Consider the following randomized strategy: pick a random index i into A. If A[i] = x, then we terminate; otherwise, we continue
the search by picking a new random index into A. We continue picking random indices into A until we find an index j such that
A[j] = x or until we have checked every element of A. Note that we pick from the whole set of indices each time, so that we may
examine a given element more than once.

a. Write pseudocode for a procedure Random-Search to implement the strategy above. Be sure that your algorithm termi-
nates when all indices into A have been picked.

b. Suppose that there is exactly one index i such that A[i] = x. What is the expected number of indices into A that we must
pick before we find x and Random-Search terminates?

c. Generalizing your solution to part (b), suppose that there are k ≥ 1 indices i such that A[i] = x. What is the expected
number of indices into A that we must pick before we find x and Random-Search terminates? Your answer should be a
function of n and k.

d. Suppose that there are no indices i such that A[i] = x. What is the expected number of indices into A that we must pick
before we have checked all elements of A and Random-Search terminates?

Now consider a deterministic linear serach algorithm, which we refer to as Deterministic-Search. Specifically, the algorithm
searches A for x in order, considering A[1], A[2], A[3], . . . , A[n] until either it finds A[i] = x or it reaches the end of the array.
Assume that all possible permutations of the input array are equally likely.

e. Suppose that there is exactly one index i such that A[i] = x. What is the average-case running time of Deterministic-
Search? What is the worst-case running time of Deterministic-Search?

f. Generalizing your solution to part (e), suppose that there are k ≥ 1 indices i such that A[i] = x. What is the average-case
running time of Deterministic-Search? What is the worst-case running time of Deterministic-Search? Your answer
should be a function of n and k.

g. Suppose that there are no indices i such that A[i] = x. What is the average-case running time of Deterministic-Search?
What is the worst-case running time of Deterministic-Search?

Finally, consider a randomized algorithm Scramble-Search that works by first randomly permuting the input array and then
running the deterministic linear search given above on the resulting permuted array.

h. Letting k be the number of indices i such that A[i] = x, give the worst-case and expected running times of Scramble-
Search for the cases in which k = 0 and k = 1. Generalize your solution to handle the case in which k ≥ 1.

i. Which of the three searching algorithms would you use? Explain your answer.

(a) The pseudocode is stated below.

1 Random-Search(A, x)
33 I = ∅
55 n = A.length
77 index = −1
99 while |I| < n do

1111 i = Random(1, n)
1313 I = I ∪ {i}
1515 if A[i] == x then
1717 index = i
1919 break

2121 return index

(b) This can be viewed as a sequence of Bernoulli trials, each with a probability p = 1/n of success. Let X be a random
variable for the number of trials needed to pick i such that A[i] = x. From Equation (C.32), we have

E[X] =
1

p
= n.

(c) This can also be viewed as a sequence of Bernoulli trials, but with a probability p = k/n of success. Thus, we have

E[X] =
1

p
=
n

k
.

61

CLRS – Chapter 5 – Probabilistic Analysis and Randomized Algorithms Daniel Bastos Moraes

(d) Let I be the set of indexes that was already checked. Let Xi be a random variable for the number of trials needed to
pick an index i, for i = 1, 2, . . . , n, such that i /∈ I and |I| = i− 1. This can be viewed as a sequence of Bernoulli trials.
Thus, we have

p =
n− |I|
n

=
n− i+ 1

n
,

and

E[Xi] =
1

p
=

n

n− i+ 1
.

Now let X be a random variable for the number of trials to pick all elements of A. We have

E[X] = E

[
n∑
i=1

Xi

]
=

n∑
i=1

E[Xi]

=

n∑
i=1

n

n− i+ 1

= n

n∑
i=1

1

n− i+ 1

= n

n−1∑
i=0

1

n− i

= n

n∑
i=1

1

i
(nth harmonic number)

= n(lnn+O(1)).

(e) Lets first consider the average case. Among the n − 1 elements that is not x, (n − 1)/2 of them are expected to be
before the element x on the array. Thus, the expected running time of the algorithm is

n− 1

2
+ 1 =

n+ 1

2
.

The worst-case occur when the number of elements before x is n− 1. In this case, the algorithm will make n checks.

(f) Let I be the set of indexes such that i ∈ I → A[i] = x. For each element e such that e 6= x, there are k + 1
possibilities to position e with respect to I (before all elements of I, after one element of I, but before the remaining
k − 1 elements of I, and so on). Each of these positions is equally likely. Therefore, among the n− k elements that is
not x, (n− k) · 1/(k+ 1) = (n− k)/(k+ 1) are expected to be before all the elements of I. Thus, the expected running
time of the algorithm is

n− k
k + 1

+ 1 =
(n− k) + (k + 1)

k + 1
=
n+ 1

k + 1
.

The worst-case occurs when the number of elements before the first x is n − k. In this case, the algorithm will make
n− k + 1 checks.

(g) In every case, the algorithm will check all elements of A. Thus, there will be n checks.

(h) Suppose the algorithm uses Randomize-In-Place to randomize the input array. Independently from the value of k,
the algorithm will take n on this operation. Thus, lets focus on the number of checks for each case. When k = 0, the
algorithm will make exactly n checks in every case. Thus, it the expected running time is n+n = 2n. When k = 1, the
behaviour of the algorithm is similar to the one of item (e). Thus, the expected running time is n+(n+1)/2 = (3n+1)/2.
As for the worst-case, note that this notation refers to the distribution of inputs. Since for every input the expected
running time is the same, the worst-case (over the inputs) is n+ (n+ 1)/2 = (3n+ 1)/2. Similarly, for a given k and
from item (f), both the expected running time and the worst-case is n+ (n+ 1)/(k + 1).

(i) Deterministic-Search is better in all cases.

62

CLRS – Chapter 6 – Heapsort Daniel Bastos Moraes

Heapsort

6.1 Heaps

6.1-1 What are the minimum and maximum numbers of elements in a heap of height h?

Minimum is 2h. Maximum is 2h+1 − 1.

6.1-2 Show that an n-element heap has height blgnc.

A heap of height h+ 1 is a complete tree of height h plus one additional level with 1 ≤ k ≤ 2h nodes. This additional level
does not count to the height of the heap, which then explain the height of blgnc.

6.1-3 Show that in any subtree of a max-heap, the root of the subtree contains the largest value occurring anywhere in that subtree.

Every node of the subtree has a path upwards to the root of the subtree. Therefore, the max-heap property assures that
each of these nodes are no larger than the root of the subtree.

6.1-4 Where in a max-heap might the smallest element reside, assuming that all elements are distinct?

In the leaves. Note that, since the bottom level may be incomplete, in addition to the nodes on level zero, some of the nodes
on level one may also be leaves.

6.1-5 Is an array that is in sorted order a min-heap?

Yes, since for each node i, we have A[Parent(i)] ≤ A[i].

6.1-6 Is the array with values 〈23, 17, 14, 6, 13, 10, 1, 5, 7, 12〉 a max-heap?

No. The element 6 is the parent of the element 7 and 6 < 7, which violates the min-heap property.

6.1-7 Show that, with the array representation for storing an n-element heap, the leaves are the nodes indexed by bn/2c+ 1, dn/2e+
2, . . . , n.

The parent of the last element of the array is the element at position bn/2c, which implies that all elements after bn/2c has
no children and are therefore leaves. Also, since the element at position bn/2c has at least one child (the element at position
n), the elements before bn/2c also have and therefore can not be leaves.

63

CLRS – Chapter 6 – Heapsort Daniel Bastos Moraes

6.2 Maintaining the heap property

6.2-1 Using Figure 6.2 as a model, illustrate the operation of Max-Heapify(A, 3) on the arrayA = 〈27, 17, 3, 16, 13, 10, 1, 5, 7, 12, 4, 8, 9, 0〉.

27

3

1

0

10

98

17

13

412

16

75

27

10

1

0

3

98

17

13

412

16

75

27

10

1

0

9

38

17

13

412

16

75

6.2-2 Starting with the procedure Max-Heapify, write pseudocode for the procedure Min-Heapify(A, i), which performs the corre-
sponding manipulation on a min-heap. How does the running time of Min-Heapify compare to that of Max-Heapify?

The pseudocode is stated below.

1 Min-Heapify(A, i)
33 l = Left(i)
55 r = Right(i)
77 if l ≤ A.heap-size and A[l] < A[i] then
99 smallest = l

1111 else
1313 smallest = i

1515 if r ≤ A.heap-size and A[r] < A[smallest] then
1717 smallest = r

1919 if smallest 6= i then
2121 exchange A[i] with A[smallest]
2323 Min-Heapify(A, smallest)

The running time is the same.

6.2-3 What is the effect of calling Max-Heapify(A, i) when the element A[i] is larger than its children?

Node i and its children already satisfies the max-heap property. No recursion will be called and the array will keep the same.

6.2-4 What is the effect of calling Max-Heapify(A, i) for i > A.heap-size/2?

Every node i > A.heap-size/2 is a leaf. No recursion will be called and the array will keep the same.

64

CLRS – Chapter 6 – Heapsort Daniel Bastos Moraes

6.2-5 The code for Max-Heapify is quite efficient in terms of constant factors, except possibly for the recursive call in line 10, which
might cause some compilers to produce inefficient code. Write an efficient Max-Heapify that uses an iterative control construct
(a loop) instead of recursion.

The pseudocode is stated below.

1 Max-Heapify-Iterative(A, i)
33 solved = False
55 current-node = i
77 while not solved do
99 l = Left(current-node)

1111 r = Right(current-node)
1313 if l ≤ A.heap-size and A[l] > A[current-node] then
1515 largest = l

1717 else
1919 largest = current-node

2121 if r ≤ A.heap-size and A[r] > A[largest] then
2323 largest = r

2525 if largest 6= current-node then
2727 exchange A[current-node] with A[largest]
2929 current-node = largest

3131 else
3333 solved = True

6.2-6 Show that the worst-case running time of Max-Heapify on a heap of size n is Ω(lgn). (Hint: For a heap with n nodes, give
node values that cause Max-Heapify to be called recursively at every node on a simple path from the root down to a leaf.)

The worst-case occurs when A[Left(i)] ≥ A[Right(i)] > A[i] in each level of the recursion, which will cause the node to be
pushed to the leftmost position on the bottom level of the heap. There will be exactly blgnc recursive calls (in addition to
the first call). Since each call is Θ(1), the total running time is blgnc ·Θ(1) = Θ(lgn) = Ω(lgn).

65

CLRS – Chapter 6 – Heapsort Daniel Bastos Moraes

6.3 Building a heap

6.3-1 Using Figure 6.3 as a model, illustrate the operation of Build-Max-Heap on the array A = 〈5, 3, 17, 10, 84, 19, 6, 22, 9〉.

5

17

619

3

8410

922

5

17

619

3

8422

910

5

19

617

3

8422

910

5

19

617

84

322

910

84

19

617

22

310

95

6.3-2 Why do we want the loop index i in line 2 of Build-Max-Heap to decrease from bA.length/2c to 1 rather than increase from 1
to bA.length/2c?

When we use Max-Heapify in a bottom-up manner, before each call to Max-Heapify(A, i), we can be sure that the
subtrees rooted on its children are max-heaps and thus after exchanging A[i] with max(A[Left(i)], A[Right(i)]), A[i] will
be the largest node among the nodes of the subtree rooted at i. In contrast, when we use Max-Heapify in a top-down
manner, we can not be sure of that. For instance, if in a call to Max-Heapify(i), Left(i) > Right(i) and the largest node
of the subtree rooted on i is on the subtree rooted on Right(i), this largest element will never reach the position i, which
will then violate the max-heap property.

6.3-3 Show that there are at most dn/2h+1e nodes of heigh h in any n-element heap.

From 6.1-7, we know that the leaves of a heap are the nodes indexed by

bn/2c+ 1, bn/2c+ 2, . . . , n.

Note that those elements corresponds to the second half of the heap array (plus the middle element if n is odd). Thus, the
number of leaves in any heap of size n is dn/2e. Lets prove by induction. Let nh denote the number of nodes at height h.
The upper bound holds for the base since n0 = dn/20+1e = dn/2e is exactly the number of leaves in a heap of size n. Now
assume is holds for h− 1. We shall prove that it also holds for h. Note that if nh−1 is even each node at height h has exactly
two children, which implies nh = nh−1/2 = dnh−1/2e. If nh−1 is odd, one node at height h has one child and the remaining
has two children, which also implies nh = bnh−1/2c+ 1 = dnh−1/2e. Thus, we have

nh =
⌈nh−1

2

⌉
≤
⌈1

2
·
⌈ n

2(h−1)+1

⌉⌉
=
⌈1

2
·
⌈ n

2h

⌉⌉
=
⌈ n

2h+1

⌉
,

which shows that it also holds for h.

66

CLRS – Chapter 6 – Heapsort Daniel Bastos Moraes

6.4 The heapsort algorithm

6.4-1 Using Figure 6.4 as a model, illustrate the operation of HeapSort on the array A = 〈5, 13, 2, 25, 7, 17, 20, 8, 4〉.

25

20

217

13

78

45

20

17

24

13

78

255

17

5

24

13

78

2520

13

5

174

8

72

2520

8

5

1713

7

42

2520

7

5

1713

4

82

2520

5

2

1713

4

87

2520

4

5

1713

2

87

2520

2

5

1713

4

87

2520

6.4-2 Argue the correctness of HeapSort using the following loop invariant:

At the start of each iteration of the for loop of line 2–5, the subarray A[1 . . . i] is a max-heap containing the i smallest
elements of A[1 . . . n], and the subarray A[i+ 1 . . . n] contains the n− i largest elements of A[1 . . . n], sorted.

We need to show that this invariant is true prior to the first loop iteration, that each iteration of the loop maintains the
invariant, and that the invariant provides a useful property to show correctness when the loop terminates.

• Initialization. Before the for loop, i = n and line 1 assures A is a max-heap. Thus, A[1, . . . , i] = A is a max-heap
containing the i smallest elements of A and A[i+ 1, . . . , n] = ∅ contains the n− i = 0 largest elements of A, sorted.

• Maintenance. By the loop invariant, A[1, . . . , i] is a max-heap containing the i smallest elements of A, which implies
that A[1] is the ith smallest element of A. Since A[i + 1, . . . , n] already contains the n − i largest elements of A in
sorted order, after exchanging A[1] with A[i], the subarray A[i, . . . , n] now contains the n − i + 1 largest elements of
A in sorted order. Lines 4-5 maintains the max-heap property on the subarray A[1, . . . , i− 1] and decrement i for the
next iteration preserves the loop invariant.

• Termination. At termination i = 1 and the subarray A[2, . . . n] contains the n − 1 smallest elements of A in sorted
order, which also implies that A[1, . . . , n] is fully sorted.

67

CLRS – Chapter 6 – Heapsort Daniel Bastos Moraes

6.4-3 What is the running time of HeapSort on an array A of length n that is already sorted in increasing order? What about
decreasing order?

Since an array that is sorted in increasing order is not a max-heap, Build-Max-Heap will break that ordering. The Build-
Max-Heap procedure will take Θ(n) to build the max-heap and the for loop of lines 2−5 will take O(n lgn), which gives a
total running time of Θ(n) +O(n lgn) = O(n lgn).

An array sorted in drecreasing order is already a max-heap, but even in that case Build-Max-Heap will take Θ(n). Note
that, although the input is sorted in decreasing order, the intent of the algorithm is to sort in increasing order. In each
iteration of the for loop of lines 2−5, it will exchange A[1] with A[i] and will call Max-Heapify on A[1]. Since A[1] is not
anymore the largest element of A, each call to Max-Heapify may cover the entire height of the heap and thus will take
O(lgn). Thus, the for loop of lines 2−5 will run in O(n lgn) and the algorithm will take Θ(n) +O(n lgn) = O(n lgn).

6.4-4 Show that the worst-case running time of HeapSort is Ω(n lgn).

The worst-case is when every call to Max-Heapify covers the entire height of the heap. In that case, HeapSort will take

n−1∑
i=1

blg ic ≤
n−1∑
i=1

lg i = lg((n− 1)!) = Θ((n− 1) lg(n− 1)) = Ω(n lgn).

6.4-5 (?) Show that when all elements are distinct, the best-case running time of HeapSort is Ω(n lgn).

Proof on (Theorem 1, Page 86):

Schaffer, Russel, and Robert Sedgewick. “The analysis of heapsort.” Journal of Algorithms 15.1 (1993): 76-100.

68

CLRS – Chapter 6 – Heapsort Daniel Bastos Moraes

6.5 Priority queues

6.5-1 Illustrate the operation of Heap-Extract-Max on the heap A = 〈15, 13, 9, 5, 12, 8, 7, 4, 0, 6, 2, 1〉.

15

9

78

1

13

12

26

5

04

1

9

78

13

12

26

5

04

13

9

78

1

12

26

5

04

13

9

78

12

1

26

5

04

13

9

78

12

6

21

5

04

6.5-2 Illustrate the operation of Max-Heap-Insert(A, 10) on the heap A = 〈15, 13, 9, 5, 12, 8, 7, 4, 0, 6, 2, 1〉.

15

9

78

1

13

12

26

5

04

15

9

78

101

13

12

26

5

04

15

9

710

81

13

12

26

5

04

15

10

79

81

13

12

26

5

04

69

CLRS – Chapter 6 – Heapsort Daniel Bastos Moraes

6.5-3 Write pseudocode for the procedures Heap-Minimum, Heap-Extract-Min, Heap-Decrease-Key, and Min-Heap-Insert that
implement a min-priority queue with a min-heap.

The pseudocodes are stated below.

1 Heap-Minimum(A)
33 return A[1]

1 Heap-Extract-Min(A)
33 if A.heap-size < 1 then
55 error “heap underflow”

77 min = A[1]
99 A[1] = A[A.heap-size]

1111 A.heap-size = A.heap-size − 1
1313 Min-Heapify(A, 1)
1515 return min

1 Heap-Decrease-Key(A, i, key)
33 if key > A[i] then
55 error “new key is larger than current key”

77 A[i] = key
99 while i > 1 and A[Parent(i)] > A[i] do

1111 exchange A[i] with A[Parent(i)]
1313 i = Parent(i)

1 Min-Heap-Insert(A, key)
33 A.heap-size = A.heap-size + 1
55 A[A.heap-size] = +∞
77 Heap-Decrease-Key(A,A.heap-size, key)

6.5-4 Why do we bother setting the key of the inserted node to −∞ in line 2 of Max-Heap-Insert when the next thing we do is
increase its key to the desired value?

Beacause the Heap-Increase-Key procedure requires that the new key is greater than or equal to the current key.

6.5-5 Argue the correctness of Heap-Increase-Key using the folowing loop invariant:

At the start of each iteration of the while loop of lines 4-6, A[Parent(i)] ≥ A[Left(i)] and A[Parent(i)] ≥
A[Right(i)], if these nodes exist, and the subarray A[1, . . . , A.heap-size] satisfies the max-heap property, except
that there may be one violation: A[i] may be larger than A[Parent(i)].

You may assume that subarray A[1, . . . , A.heap-size] satisfies the max-heap property at the time Heap-Increase-Key is called.

We need to show that this invariant is true prior to the first loop iteration, that each iteration of the loop maintains the
invariant, and that the invariant provides a useful property to show correctness when the loop terminates.

• Initialization. Before the while loop, A is a valid max-heap with a possible change on the value of the element
A[i]. Thus, the invariants A[Parent(i)] ≥ A[Left(i)] and A[Parent(i)] ≥ A[Right(i)] holds (these values were not
changed before the loop). Since the new value of A[i] is equal or larger its previous value and its previous value was
equal or larger than the value of its children (A was a max-heap at the time Heap-Increse-Key was called), the only
possible violation on the heap is that A[i] may be larger than A[Parent(i)], thus the second invariant also holds.

• Maintenance. By the loop invariant, the only possible violation is that A[i] may be larger than A[Parent(i)]. If there
is no violation (A[i] does not have a parent of A[i] ≤ A[Parent(i)]), the loop terminates and A is a valid max-heap.
If there is a violation on A[i], the positions of A[i] and A[Parent(i)] are exchanged. From the loop invariant, before
the exchange, A[Parent(i)] ≥ A[Left(i)] and A[Parent(i)] ≥ A[Right(i)], which implies that, after the exchange,
the new A[i] will not violate the max-heap property anymore and the invariants A[Parent(i)] ≥ A[Left(i)] and
A[Parent(i)] ≥ A[Right(i)] will remain valid. The only possible violation after the exchange is that A[Parent(i)]
may be larger than A[Parent(Parent(i))], but setting i = Parent(i) preserves the loop invariant for the next
iteration.

• Termination. At termination, either i = 1 or A[i] ≤ A[Parent(i)]. In both cases, A[i] is not larger than A[Parent(i)],
which implies that A is a valid max-heap.

70

CLRS – Chapter 6 – Heapsort Daniel Bastos Moraes

6.5-6 Each exchange operation on line 5 of Heap-Increase-Key typically requires three assignments. Show how to use the idea of
the inner loop of Insertion-Sort to reduce the three assignments down to just one assignment.

The updated pseudocode is stated below.

1 Heap-Increase-Key(A, i, key)
33 if key < A[i] then
55 error “new key is smaller than current key”

77 while i > 1 and A[Parent(i)] < key do
99 A[i] = A[Parent(i)]

1111 i = Parent(i)

1313 A[i] = key

6.5-7 Show how to implement a first-in, first-out queue with a priority queue. Show how to implement a stack with a priority queue.
(Queues and stacks are defined in Section 10.1.)

A first-in, first-out queue can be implemented using a min-priority-queue, in such a way that each heap element is a tuple
(key, handle) and the key of a new element is greater than the key of the current elements. The Extract-Min operation
will always return the oldest element (minimum key value) and the Insert operation will keep the min-heap property. A
stack can be implemented similarly, but with a max-priority-heap instead of a min-priority-heap.

6.5-8 The operation Heap-Delete(A, i) deletes the item in node i from heap A. Give an implementation of Heap-Delete that runs
in O(lgn) time for an n-element max-heap.

The pseudocode is stated below.

1 Heap-Delete(A, i)
33 A[i] = A[heap-size]
55 A.heap-size = A.heap-size − 1
77 Max-Heapify(A, i)

6.5-9 Give an O(n lg k)-time algorithm to merge k sorted lists into one sorted list, where n is the total number of elements in all the
input lists. (Hint: Use a min-heap for k-way merging.)

Let T denote the final sorted list and Si the ith input list. The pseudocode is stated below.

1 Merge-Lists-Min-Heap(S1, S2, . . . , Sk)
33 Let T be a list
55 Let H be a min-heap of tuples in the form (key, j)
77 for i = 1 to k do
99 Insert(H, (Si[1], i))

1111 pi = 2

1313 while H.heap-size > 0 do
1515 (key, j) = Extract-Min(H)
1717 add key to T
1919 if pj ≤ Sj .length then
2121 Insert(H, (Sj [pj], j))
2323 pj = pj + 1

2525 return T

The for loop of lines 3-5 runs in O(k lg k). The while loop of lines 6-11 will iterate n times and each iteration takes O(lg k).
Since n ≥ k, the algorithm runs in O(n lg k).

71

CLRS – Chapter 6 – Heapsort Daniel Bastos Moraes

Problems

6-1 Building a heap using insertion
We can build a heap by repeatedly calling Max-Heap-Insert to insert the elements into the heap. Consider the following
variation on the Build-Max-Heap procedure:

1 Build-Max-Heap’(A)
33 A.heap-size = 1
55 for i = 2 to A.length do
77 Max-Heap-Insert(A,A[i])

a. Do the procedures Build-Max-Heap and Build-Max-Heap’ always create the same heap when run on the same input
array? Prove that they do, or provide a counterexample.

b. Show that in the worst-case, Build-Max-Heap’ requires Θ(n lgn) time to build an n-element heap.

(a) No. Consider the array A = [1, 2, 3]. Build-Max-Heap(A) will create the heap

1

32

3

12

while Build-Max-Heap’(A) will create the heap

1

32

2

31

3

21

(b) Let A be the input array. The worst-case occurs when there is an integer k such that n = A.length = 2k−1 (that is, the
elements of A forms a complete binary tree) and each call to Max-Heap-Insert covers the entire height of the heap
(occurs when A is sorted). Since any heap has dn/2e leaves, the last dn/2e elements of A will be the leaves of the final
heap. Note that, at the time Max-Heap-Insert is called on these last dn/2e nodes, the height of the heap will be blgnc.
Thus, considering only the last dn/2e calls to Max-Heap-Insert, the algorithm will take dn/2e ·Θ(blgnc) = Θ(n lgn),
which implies that the worst-case of Build-Max-Heap’ runs in Ω(n lgn). Also, note that there will be exactly n− 1
calls to Max-Heap-Insert and each call takes O(blgnc). Thus, the worst-case of Build-Max-Heap’ runs in Θ(n lgn).

72

CLRS – Chapter 6 – Heapsort Daniel Bastos Moraes

6-2 Analysis of d-ary heaps
A d-ary heap is like a binary heap, but (with one possible exception) non-leaf nodes have d children instead of 2 children.

a. How would you represent a d-ary heap in an array?

b. What is the height of a d-ary heap of n elements in terms of n and d?

c. Give an efficient implementation of Extract-Max in a d-ary max-heap. Analyze its running time in terms of d and n.

d. Give an efficient implementation of Insert in a d-ary max-heap. Analyze its running time in terms of d and n.

e. Give an efficient implementation of Increase-Key(A, i, k), which flags an error if k < A[i], but otherwise sets A[i] = k and
then updates the d-ary max-heap structure appropriately. Analyze its running time in terms of d and n.

(a) The root occupies the first d0 = 1 positions of the array, its children occupies the next d1 = d positions of the array,
and so on until the bottom level. That way, the parent of a node with index i will be at position⌊ i− (d− 2)

d

⌋
=
⌊ i− d+ 2

d

⌋
,

and its jth children will be at position

di− (d− j) + 1 = di− d+ j + 1 = d(i− 1) + j + 1.

(b) h = blogd nc.
(c) The only major modification is the Max-Heapify procedure. The pseudocode is stated below.

1 Child-D-Ary(d, i, j)
33 return d(i− 1) + j + 1

1 Extract-Max-D-Ary(A, d)
33 if A.heap-size < 1 then
55 error “heap underflow”

77 max = A[1]
99 A.heap-size = A.heap-size − 1

1111 Max-Heapify-D-Ary(A, d, 1)
1313 return max

1 Max-Heapify-D-Ary(A, d, i)
33 largest = i
55 for j = 1 to d do
77 child-j = Child(d, i, j)
99 if child-j > A.heap-size then

1111 break

1313 if A[child-j] > A[largest] then
1515 largest = child-j

1717 if largest 6= i then
1919 exchange A[i] with A[largest]
2121 Max-Heapify-D-Ary(A, d, largest)

In the worst-case, Max-Heapify-D-Ary covers the height of the heap (which is logd n). Since each recursive call takes
O(d), Max-Heapify-D-Ary runs in O(d logd n). The running time of Extract-Max-D-Ary is also O(d logd n), since
it performs a constant amount of work on top of Max-Heapify-D-Ary.

(d) The Max-Heap-Insert procedure given in the text book also works for a d-ary heap. The only modification is to use
Parent-D-Ary instead of Parent in the Heap-Increase-Key subroutine. In the worst case, it will cover the height
of the tree. Thus, the running time is O(logd n).

(e) The Heap-Increase-Key procedure given in the text book also works for a d-ary heap. The only modification is to
use Parent-D-Ary instead of Parent. In the worst case, it will cover the height of the tree. Thus, the running time
is O(logd n).

73

CLRS – Chapter 6 – Heapsort Daniel Bastos Moraes

6-3 Young tableaus
An m × n Young tableau is an m × n matrix such that the entries of each row are in sorted order from left to right and the
entries of each column are in sorted order from top to bottom. Some of the entries of a Young tableau may be ∞, which we treat
as nonexistent elements. Thus, a Young tableau can be used to hold r ≤ mn finite numbers.

a. Draw a 4× 4 Young tableau containing the elements {9, 16, 3, 2, 4, 8, 5, 14, 12}.
b. Argue that an m×n Young tableau Y is empty if Y [1, 1] =∞. Argue that Y is full (contains mn elements) if Y [m,n] <∞.

c. Give an algorithm to implement Extract-Min on a non-empty m × n Young tableau that runs in O(m + n) time. Your
algorithm should use a recursive subroutine that solves an m×n problem by recursively solving either an (m− 1)×n or an
m× (n− 1) subproblem. (Hint: Think about Max-Heapify.) Define T (p), where p = m+ n, to be the maximum running
time of Extract-Min on any m × n Young tableau. Give and solve a recurrence for T (p) that yields the O(m + n) time
bound.

d. Show how to insert a new element into a nonfull m× n Young tableau in O(m+ n) time.

e. Using no other sorting method as a subroutine, show how to use an n×n Young tableau to sort n2 numbers in O(n3) time.

f. Give an O(m+ n)-time algorithm to determine whether a given number is stored in a given m× n Young tableau.

(a) Here it is:

2 3 4 5
8 9 12 14
16 ∞ ∞ ∞
∞ ∞ ∞ ∞

(b) From the definition of a Young tableau, we have

Y [1, 1] ≤ Y [i, j] ∀ i, j,

which implies
Y [1, 1] =∞→ Y [i, j] =∞ ∀ i, j.

Thus, Y is full of ∞ and is therefore empty.

From the definition of a Young tableau, we have

Y [m,n] ≥ Y [i, j] ∀ i, j,

which implies
Y [m,n] <∞→ Y [i, j] <∞ ∀ i, j.

Thus, Y does not have any ∞ and is therefore full.

(c) The pseudocode is stated below.

1 Extract-Min(Y)
33 min = Y [1, 1]
55 if min ==∞ then
77 error “tableau underflow”

99 Y [1, 1] =∞
1111 Min-Tableauify(Y, 1, 1)
1313 return min

1 Min-Tableauify(Y, i, j)
33 smallest-i = i
55 smallest-j = j
77 if i+ 1 ≤ Y.rows and Y [i+ 1, j] < Y [smallest-i, smallest-j] then
99 smallest-i = i+ 1

1111 if j + 1 ≤ Y.cols and Y [i, j + 1] < Y [smallest-i, smallest-j] then
1313 smallest-i = i
1515 smallest-j = j + 1

1717 if i 6= smallest-i or j 6= smallest-j then
1919 Y [i, j] = Y [smallest-i , smallest-j]
2121 Y [smallest-i , smallest-j] =∞
2323 Min-Tableauify(Y, smallest-i , smallest-j)

The algorithm has the recurrence T (p) ≤ T (p− 1) + Θ(1) = O(p) +O(m+ n).

74

CLRS – Chapter 6 – Heapsort Daniel Bastos Moraes

(d) The pseudocode is stated below.

1 Tableau-Insert(Y, key)
33 i = Y.rows
55 j = Y.cols
77 if Y [i, j] ==∞ then
99 error “tableau overflow”

1111 Y [i, j] = key
1313 while i > 1 or j > 1 do
1515 if i > 1 and Y [i, j] < Y [i− 1, j] then
1717 exchange Y [i, j] with Y [i− 1, j]
1919 i = i− 1

2121 else if j > 1 and Y [i, j] < Y [i, j − 1] then
2323 exchange Y [i, j] with Y [i, j − 1]
2525 j = j − 1

2727 else
2929 break

We first set the element to the position A[m,n] and move it upwards and/or leftwards until we find a valid position.
The running time is O(m+ n)

(e) The pseudocode is stated below.

1 Build-Young-Tableau(A)
33 n =

√
A.length

55 Let Y be an n× n array
77 for i = 1 to A.length do
99 Tableau-Insert(Y,A[i])

1111 return Y

1 Tableausort(A)
33 Y = Build-Young-Tableau(A)
55 for i = 1 to A.length do
77 A[i] = Extract-Min(Y)

The Build-Young-Tableau procedure runs in n2 ·O(n+n) = O(n3). Each call to Min-Tableauify runs in O(n+n) =
O(n). Thus, the algorithm runs in O(n3) + n2 ·O(n) = O(n3).

(f) The pseudocode is stated below.

1 Tableau-Find(Y, key)
33 i = Y.rows
55 j = 1
77 while i ≥ 1 and j ≤ Y.cols do
99 if Y [i, j] == key then

1111 return True

1313 else if Y [i, j] ≤ Y [i− 1, j] then
1515 i = i− 1

1717 else if Y [i, j] ≥ Y [i, j + 1] then
1919 j = j + 1

2121 else
2323 break

2525 return False

75

CLRS – Chapter 7 – Quicksort Daniel Bastos Moraes

Quicksort

7.1 Description of quicksort

7.1-1 Using Figure 7.1 as a model, illustrate the operation of Partition on the array A = 〈13, 19, 9, 5, 12, 8, 7, 4, 21, 2, 6, 11〉.

13 19 9 5 12 8 7 4 21 2 6 11

13 19 9 5 12 8 7 4 21 2 6 11

13 19 9 5 12 8 7 4 21 2 6 11

9 19 13 5 12 8 7 4 21 2 6 11

9 5 13 19 12 8 7 4 21 2 6 11

9 5 13 19 12 8 7 4 21 2 6 11

9 5 8 19 12 13 7 4 21 2 6 11

9 5 8 7 12 13 19 4 21 2 6 11

9 5 8 7 4 13 19 12 21 2 6 11

9 5 8 7 4 13 19 12 21 2 6 11

9 5 8 7 4 2 19 12 21 13 6 11

9 5 8 7 4 2 6 12 21 13 19 11

9 5 8 7 4 2 6 11 21 13 19 12

7.1-2 What value of q does Partition return when all elements in the array A = [p, . . . , r] have the same value? Modify Partition
so that q = b(p+ r)/2c when all elements in the array A[p, . . . , r] have the same value.

It will return q = r. We can update Partition to split elements that are equal to the pivot on both sides as follows:

(a) Count the number of elements y such that y = x and set this value to c;

(b) Subtract the final pivot index by bc/2c.

The updated pseucode is stated below.

Partition-Improved(A, p, r)
1 x = A[r]
2 i = j = p− 1
3 for k = p to r − 1 do
4 if A[k] ≤ x then
5 j = j + 1
6 exchange A[j] with A[k]
7 if A[j] < x then
8 i = i+ 1
9 exchange A[i] with A[j]

10 exchange A[j + 1] with A[r]

11 q =
⌊

(i+1)+(j+1)
2

⌋
12 return q

7.1-3 Give a brief argument that the running time of Partition on a subarray of size n if Θ(n).

The for loop of lines 3−6 iterates n− 1 times and each iteration does a constant amount of work. Thus, it is O(n).

76

CLRS – Chapter 7 – Quicksort Daniel Bastos Moraes

7.1-4 How would you modify Quicksort to sort into nonincreasing order?

We just need to update the condition
A[j] ≤ x,

to
A[j] ≥ x.

77

CLRS – Chapter 7 – Quicksort Daniel Bastos Moraes

7.2 Performance of quicksort

7.2-1 Use the substitution method to prove the recurrence T (n) = T (n− 1) + Θ(n) has the solution T (n) = Θ(n2), as claimed at the
beginning of Section 7.2.

Our guess is
T (n) ≤ cn2 − dn ∀n ≥ n0,

where c, d, and n0 are positive constants. Substituting into the recurrence, yields

T (n) ≤ c(n− 1)2 − d(n− 1) + en

= cn2 − 2cn+ c− d(n− 1) + en (c = 1, d = 2e)

≤ cn2,

where the last step holds as long as n0 ≥ 2.

7.2-2 What is the running time of Quicksort when all elements of array A have the same value?

As discussed in (7.1-2), when all elements are the same, q will always be equal to r, which gives the worst-case split. Thus,
Quicksort as implemented in Section 7.1, will run in Θ(n2) in this case.

7.2-3 Show that the running time of Quicksort is Θ(n2) when the array A contains distinct elements and is sorted in decreasing
order.

The pivot index q will always be 1, which gives a 0 to n− 1 split. The recurrence will be T (n) = T (n− 1) + Θ(n) = Θ(n2).

7.2-4 Banks often record transactions on an account in order of the times of the transactions, but many people like to receive their bank
statements with checks listed in order by check number. People usually write checks in order by check number, and merchants
usually cash them with reasonable dispatch. The problem of converting time-of-transaction ordering to check-number ordering
is therefore the problem of sorting almost-sorted input. Argue that the procedure Insertion-Sort would tend to beat the
procedure Quicksort on this problem.

Lets assume that each item is out of order by no more than k positions. Note that in the above scenario, k usually can be
bounded by a constant. In this case, Insertion-Sort runs in O(kn) (it will make at most k swaps for each item of the
array), which is close to linear for small k. On the other hand, most splits given by the Partition procedure will be no
better than a k − 1 to n − k split. Assuming that it always give an k − 1 to n − k split, the recurrence of Quicksort will
be T (n) = T (k) + T (n− k) + Θ(n), which is close to quadratic for small k.

7.2-5 Suppose that the splits at every level of quicksort are in the proportion 1 − α to α, where 0 < α ≤ 1/2 is a constant. Show
that the minimum depth of a leaf in the recursion tree is approximately − lgn/ lgα and the maximum depth is approximately
− lgn/ lg(1− α). (Don’t worry about integer round-off.)

Note that

α ≤ 1

2
≤ 1− α,

which implies αn ≤ (1− α)n. Thus, the minimum depth occurs on the path from which the problem size is always divided
by 1/α. This depth is the number of divisions of n by (1/α) until reaching a value less than of equal to one, which is

log1/α n =
lgn

lg(1/α)
=

lgn

− lgα
= − lgn

lgα
.

The maximum depth occurs on the path from which the problem size is always divided by 1/(1 − α). This depth is the
number of divisions of n by 1/(1− α) until reaching a value less than or equal to one, which is

log1/(1−α) n =
lgn

lg(1/(1− α))
=

lgn

− lg(1− α)
= − lgn

lg(1− α)
.

78

CLRS – Chapter 7 – Quicksort Daniel Bastos Moraes

7.2-6 (?) Argue that for any constant 0 < α ≤ 1/2, the probability is approximately 1− 2α that on a random input array, Partition
produces a split more balanced than 1− α to α.

Note that α denotes the proportion of the smallest split. Since the input array is random, the possible proportions for the
smallest split forms a uniform probability distribution, such that

Pr

{[
0,

1

2

]}
= 1.

Thus, the probability of getting a more balanced split is

Pr

{(
α,

1

2

]}
= Pr

{[
α,

1

2

]}
=

1/2− α
1/2− 0

=
1/2

1/2
− α

1/2

= 1− 2α.

79

CLRS – Chapter 7 – Quicksort Daniel Bastos Moraes

7.3 A randomized version of quicksort

7.3-1 Why do we analyze the expected running time of a randomized algorithm and not its worst-case running time?

We can analyze the worst-case. However, due to the randomization, it is not very useful since we can not associate a specific
input to a specific running time. On the other hand, we can calculate the expected running time, which takes into account
all the possible inputs.

7.3-2 When Randomized-Quicksort runs, how many calls are made to the random-number generator Random in the worst case?
How about in the best case? Give your answer in terms of Θ-notation.

First note that counting the number of calls to Random is the same as counting number of calls to Partition.

The worst-case occurs when Partition always gives an (n− 1)-to-0 split. Note that after the first n− 1 pivots are selected,
the remaining subarray will contain a single element. Since Partition is only called on subarrays of size greater than one,
in the worst-case the number of calls to Partition is n− 1 = Θ(n).

As for the best case, consider the array A = [1, 2, 3]. If the element 2 is the first to be selected as a pivot, the subarrays [1]
and [3] will not be passed to Partition (both of them has size one) and the number of calls to Partition in this case is 1.
In general, in the best-case the number of calls to Partition is bn/2c = Θ(n).

80

CLRS – Chapter 7 – Quicksort Daniel Bastos Moraes

7.4 Analysis of quicksort

7.4-1 Show that T (n) = Ω(n2) in the recurrence

T (n) = max
0≤q≤n−1

(T (q) + T (n− q − 1)) + Θ(n).

We guess that T (n) ≥ cn2 for some constant c. Substituting into the recurrence, yields

T (n) ≥ max
0≤q≤n−1

(cq2 + c(n− q − 1)2) + Θ(n)

= c · max
0≤q≤n−1

(q2 + (n− q − 1)2) + Θ(n).

The expression q2 + (n− q − 1)2 achieves a maximum at q = 0 (proof on (7.4-3)). Thus, we have

max
0≤q≤n−1

(q2 + (n− q − 1)2) = (n− 1)2,

which give us the bound
T (n) ≥ c(n− 1)2 + Θ(n)

= cn2 − 2cn+ c+ Θ(n)

= cn2 − c(2n− 1) + Θ(n)

≥ cn2,

since we pick the constant c small enough so that the Θ(n) term dominates the c(2n− 1) term, which implies

T (n) = Ω(n2).

7.4-2 Show that quicksort’s best-case running time is Ω(n lgn).

Let T (n) be the best-case time of Quicksort on an input of size n. We have the recurrence

T (n) = min
0≤q≤n−1

(T (q) + T (n− q − 1)) + Θ(n).

We guess T (n) ≥ cn lgn for some constant c. Substituting into the recurrence yields

T (n) ≥ min
0≤q≤n−1

(cq lg q + c(n− q − 1) lg(n− q − 1)) + Θ(n)

= c · min
0≤q≤n−1

(q lg q + (n− q − 1) lg(n− q − 1)) + Θ(n).

For simplicify, assume that n is odd. The expression cq lg q + (n− q − 1) lg(n− q − 1) achieves a minimum when

q = n− q − 1,

which implies

q =
n− 1

2
.

Thus, we have

T (n) ≥ c
(
n− 1

2

)
lg

(
n− 1

2

)
+ c

(
n− n− 1

2
− 1

)
lg

(
n− n− 1

2
− 1

)
+ Θ(n)

= c(n− 1) lg

(
n− 1

2

)
+ Θ(n)

= c(n− 1) lg(n− 1)− c(n− 1) + Θ(n)

= cn lg(n− 1)− c lg(n− 1)− c(n− 1) + Θ(n)

≥ cn lg
(n

2

)
− c lg(n− 1)− c(n− 1) + Θ(n) (n ≥ 2)

= cn lgn− cn− c lg(n− 1)− c(n− 1) + Θ(n)

= cn lgn− c(2n+ lg(n− 1)− 1) + Θ(n)

≥ cn lgn,

since we pick the constant c small enough so that the Θ(n) term dominates the c(2n+ lg(n− 1)− 1) term, which implies

T (n) = Ω(n lgn).

81

CLRS – Chapter 7 – Quicksort Daniel Bastos Moraes

7.4-3 Show that the expression q2 + (n− q − 1)2 achieves a maximum over q = 0, 1, . . . , n− 1 when q = 0 or q = n− 1.

Let f(q) = q2 + (n− q − 1)2. We have

f ′(q) = 2q + 2(n− q − 1) · (−1) = 4q − 2n+ 2,

and
f ′′(q) = 4.

Since the second derivative is positive, f(q) achieves a maximum over 0, 1, . . . , n− 1 at either endpoint. But we have

f(0) = 02 + (n− 1)2 = (n− 1)2 + (n− (n− 1)− 1)2 = f(n− 1),

which implies that both endpoints are maximum.

7.4-4 Show that Randomized-Quicksort’s expected running time is Ω(n lgn).

Combining equations (7.2) and (7.3), we get

E[X] =

n−1∑
i=1

n∑
j=i+1

2

j − i+ 1

=

bn/2c∑
i=1

n−i∑
k=1

2

k + 1
+

n−1∑
i=bn/2c+1

n−i∑
k=1

2

k + 1

≥
bn/2c∑
i=1

n−i∑
k=1

2

k + 1

≥
bn/2c∑
i=1

n/2∑
k=1

2

k + 1

≥
bn/2c∑
i=1

n/2∑
k=1

1

k
(since k ≥ 1)

=
⌊n

2

⌋
·
(

lg
(n

2

)
+O(1)

)
(approx. of harmonic number)

= Ω(n lgn).

7.4-5 We can improve the running time of quicksort in practice by taking advantage of the fast running time of insertion sort when its
input is “nearly” sorted. Upon calling quicksort on a subarray with fewer than k elements, let it simply return without sorting
the subarray. After the top-level call to quicksort returns, run insertion sort on the entire array to finish the sorting process.
Argue that this sorting algorithm runs in O(nk+n lg(n/k)) expected time. How should we pick k, both in theory and in practice?

Lets first analyze the modified Quicksort. As in the standard Quicksort, it is easy to see that the worst-case of this
modified version is still O(n2). As for the expected time, we can use a similar argument to the one used on Section 7.2, in
which we saw that any split of constant proportionality on Quicksort yields a recursion tree of depth Θ(lgn). Assume that
Partition on this modified Quicksort always give a 99-to-1 split. The height h of the recursion tree would be

n

(100/99)h
= k → h = log100/99

n

k
→ h = Θ

(
lg
n

k

)
.

Since each recursion level has cost at most cn, the expected total cost of this modified Quicksort is O(n lg n
k

). As for the
cost of the Insertion-Sort, note after running the modified Quicksort, every element will be out of order by at most k
positions. Thus, each iteration of the outer loop of Insertion-Sort will make at most k swaps, which gives a running time
of O(nk). Finally, the cost of the whole algorithm is

O(nk) +O
(
n lg

(n
k

))
= O

(
nk + n lg

(n
k

))
.

82

CLRS – Chapter 7 – Quicksort Daniel Bastos Moraes

7.4-6 (?) Consider modifying the Partition procedure by randomly picking three elements from array A and partitioning about their
median (the middle value of the three elements). Approximate the probability of getting at worst an α-to-(1 − α) split, as a
function of α in the range 0 < α < 1.

First assume 0 < α ≤ 1/2. There four ways to get a split worse than α-to-(1− α):

(a) The index of exactly two elements are smaller than αn

(b) The index of exactly two elements are greater than n− αn.

(c) The index of all three elements are smaller than αn.

(d) The index of all three elements are greater than n− αn.

Since we want an approximation, assume that we can repeat the same element. The probability of cases (a) and (b) is

Pr{(a)} = Pr{(b)} = 3 ·
(
αn

n
· αn
n
· (1− α)n

n

)
= 3α2 − 3α3,

in which the multiplication on the left is needed since there are
(
3
1

)
= 3 ways to pick one of three elements outside the desired

range. The probability of cases (c) and (d) is

Pr{(c)} = Pr{(d)} =
αn

n
· αn
n
· αn
n

= α3.

Thus, the probability of getting a split worse than α-to-(1− α) is

1− Pr{(a) + (b) + (c) + (d)} = 1− (Pr{(a)}+ Pr{(b)}+ Pr{(c)}+ Pr{(d)})

= 1−
(
(3α2 − 3α3) + (3α2 − 3α3) + α3 + α3)

= 1− (6α2 − 4α3)

= 1− 6α2 + 4α3.

The proof is similar for 1/2 ≤ α < 1 and the result is the same.

83

CLRS – Chapter 7 – Quicksort Daniel Bastos Moraes

Problems

7-1 Hoare partition correctness
The version of Partition given in this chapter is not the original partitioning algorithm. Here is the original partition algorithm,
which is due to C.A.R. Hoare:

Hoare-Partition(A, p, r)
1 x = A[p]
2 i = p− 1
3 j = r + 1
4 while True do
5 repeat
6 j = j − 1
7 until A[j] ≤ x
8 repeat
9 i = i+ 1

10 until A[i] ≥ x
11 if i < j then
12 exchange A[i] with A[j]
13 else
14 return j

a. Demonstrate the operation of Hoare-Partition on the array A = 〈13, 19, 9, 5, 12, 8, 7, 4, 11, 2, 6, 21〉, showing the values of
the array and auxiliary values after each iteration of the while loop in lines 4–13.

The next three questions ask you to give a careful argument that the procedure Hoare-Partition is correct. Assuming that the
subarray A[p, . . . , r] contains at least two elements, prove the following:

b. The indices i and j are such that we never access an element of A outside the subarray A[p, . . . , r].

c. When Hoare-Partition terminates, it returns a value j such that p ≤ j < r.

d. Every element of A[p, . . . , j] is less than or equal to every element of A[j + 1, . . . , r] when Hoare-Partition terminates.

The Partition procedure in Section 7.1 separates the pivot value (originally in A[r]) from the two partitions it forms. The
Hoare-Partition procedure, on the other hand, always places the pivot value (originally in A[p]) into one of the two partitions
A[p, . . . , j] and A[j + 1, . . . , r]. Since p ≤ j < r, this split is always nontrivial.

e. Rewrite the Quicksort procedure to use Hoare-Partition.

(a) The operation is illustrated below:

i x j
13 19 9 5 12 8 7 4 11 2 6 21
x, i j
13 19 9 5 12 8 7 4 11 2 6 21

i j x
6 19 9 5 12 8 7 4 11 2 13 21

j i x
6 2 9 5 12 8 7 4 11 19 13 21

(b) Consider the following loop invariant :

At the beginning of each iteration of the while loop of lines 4-13, i < j and the subarray A[p, . . . , j − 1]
contains at least one element that is lower than or equal to A[x]. Similarly, the subarray A[i + 1, . . . , r]
contains at least one element that is greater than or equal to A[x].

We need to show that this loop invariant is true prior to the first iteration, that each iteration of the loop maintains
the invariant, and that the invariant provides a useful property to show correctness when the loop terminates.

• Initialization. Prior to the while loop of lines 4-13, i = p−1 and j = r−1. Since A[i+1, . . . , r] = A[p, . . . , j−1] =
A[p, . . . , r], the element A[x] is present in both subarrays. Thus, the loop invariant is valid before the loop.

• Maintenance. From the loop invariant, the for loops of lines 5-7 and 8-10 will both stop on valid indices i and
j. The loop only goes to the next iteration if i < j. In that case, the elements A[i] and A[j] are exchanged, which
ensures the loop invariant for the next iteration.

• Termination. At termination, the for loops of lines 5-7 and 8-10 will stop on valid indices i and j such that i ≥ j
and the loop terminates before going to the next iteration.

84

CLRS – Chapter 7 – Quicksort Daniel Bastos Moraes

The above loop invariant ensures that the for loops of lines 5-7 and 8-10 will never make j < p or i > r, which implies
that the Hoare-Partition procedure always access elements within the subarray A[p, . . . , r].

(c) From item (b), we have the lower bound j ≥ p. As for the upper bound of j, note that:

i. If A[r] > x, the condition on line 7 will be false at least one time, which implies that line 6 will be executed at
least twice. Since the initial value of j is r + 1, in this case we have j < r.

ii. If A[r] ≤ x, A[r] will be exchanged with A[p] in the first iteration of the while loop and line 6 will be executed
for the second time in the next iteration. Thus, in this case we also have j < r.

These observations give us the bound p ≤ j < r.

(d) Consider the following loop invariant :

At the beginning of each iteration of the while loop of lines 4-13, every element of the subarrayA[p, . . . ,min(i, j)]
is less than or equal to every element of the subarray A[j + 1, . . . , r].

We need to show that this loop invariant is true prior to the first iteration, that each iteration of the loop maintains
the invariant, and that the invariant provides a useful property to show correctness when the loop terminates.

• Initialization. Prior to the while loop, i = p − 1, j = r + 1. Since the subarrays A[p, . . . , i] and A[j, . . . , r] are
empty, the loop invariant is trivially satisfied.

• Maintenance. To see that each iteration maintains the loop invariant, note that the for loops of lines 5-7 and 8-10
will decrease j and increase i until find an A[j] ≤ x and an A[i] ≥ x, respectivelly. At this point, the loop invariant
(of previous iteration) along with the conditions of lines 7 and 10 ensures that every element of A[p, . . . , i − 1] is
less than or equal to every element of A[j + 1, . . . , r]. The only possible exceptions to the loop invariant in this
iteration are the elements A[i] and A[j]. Since A[i] ≥ x and A[j] ≤ x, we have A[i] ≥ A[j]. To go to the next
iteration line 11 must be valid and the exchange of A[i] with A[j] at line 12 maintains the loop invariant.

• Termination. At termination, the for loop of lines 5-7 and 8-10 will stop on indices i and j such that i ≥ j.
Since min(i, j) = j, the loop invariant (of previous iteration) along with the conditions of lines 7 and 10 ensures
that every element of A[p, . . . , j] will be less than or equal to every element of A[j + 1, . . . , r].

(e) The pseudocode is stated below.

Hoare-Quicksort(A, p, r)
1 if p < r then
2 q = Hoare-Partition(A, p, r)
3 Hoare-Partition(A, p, q)
4 Hoare-Partition(A, q + 1, r)

85

CLRS – Chapter 7 – Quicksort Daniel Bastos Moraes

7-2 Quicksort with equal element values
The analysis of the expected running time of randomized quicksort in Section 7.4.2 assumes that all element values are distinct.
In this problem, we examine what happens when they are not.

a. Suppose that all element values are equal. What would be randomized quicksort’s running time in this case?

b. The Partition procedure returns an index q such that each element of A[p, . . . , q− 1] is less than or equal to A[q] and each
element of A[q+1, . . . , r] is greater than A[q]. Modify the Partition procedure to produce a procedure Partition’(A, p, r),
which permutes the elements of A[p, . . . , r] and returns two indices q and t, where p ≤ q ≤ t ≤ r, such that

• all elements if A[q, . . . , t] are equal,

• each element of A[p, . . . , q − 1] is less than A[q], and

• each element of A[r + 1, . . . , r] is greater than A[q].

Like Partition, your Partition’ procedure should take Θ(r − p) time.

c. Modify the Randomized-Partition procedure to call Partition’, and name the new procedure Randomized-Partition’.
Then modify the Quicksort procedure to produce a procedure Quicksort’(A, p, r) that calls Randomized-Partition’
and recurses only on partitions of elements not known to be equal to each other.

d. Using Quicksort’, how would you adjust the analysis in Section 7.4.2 to avoid the assumption that all elements are distinct?

(a) In this case, the condition on line 4 of the Partition procedure will always be valid and it will always give “bad” splits
((n− 1)-to-0). Thus, the running time will be Θ(n2).

(b) This item is similar to the Question 7.1-2. The pseudocode of the modified Partition procedure is stated below.

Partition’(A, p, r)
1 x = A[r]
2 i = j = p− 1
3 for k = p to r − 1 do
4 if A[k] ≤ x then
5 j = j + 1
6 exchange A[j] with A[k]
7 if A[j] < x then
8 i = i+ 1
9 exchange A[i] with A[j]

10 exchange A[j + 1] with A[r]
11 q = i+ 1
12 t = j + 1
13 return q, t

(c) The pseudocode of the modified Randomized-Partition Quicksort procedures are stated below.

Randomized-Partition’(A, p, r)
1 i = Random(p, r)
2 exchange A[r] with A[i]
3 return Partition’(A, p, r)

Quicksort’(A, p, r)
1 if p < r then
2 q, t = Randomized-Partition’(A, p, r)
3 Quicksort’(A, p, q − 1)
4 Quicksort’(A, t+ 1, r)

(d) We just need to rewrite the sentence

In general, because we assume that element values are distinct, once a pivot x is chosen with zi < x < zj , we
know that zi and zj cannot be compared at any subsequent time.

as

Once a pivot zq is chosen with zi ≤ zq ≤ zj , such that i 6= q and j 6= q, we know that zi and zj cannot be
compared at any subsequent time.

86

CLRS – Chapter 7 – Quicksort Daniel Bastos Moraes

7-3 Alternative quicksort analysis
An alternative analysis of the running time of randomized quicksort focuses on the expected running time of each individual
recursive call to Randomized-Quicksort, rather than on the number of comparisons performed.

a. Argue that, given an array of size n, the probability that any particular element is chosen as the pivot is 1/n. Use this to
define indicator random variables Xi = I{ith smallest element is chosen as the pivot}. What is E[Xi]?

b. Let T (n) be a random variable denoting the running time of quicksort on an array of size n. Argue that

E[T (n)] = E

[
n∑
q=1

Xq(T (q − 1) + T (n− q) + Θ(n))

]
.

c. Show that we can rewrite equation (7.5) as

E[T (n)] =
2

n

n−1∑
q=2

E[T (q)] + Θ(n).

d. Show that
n−1∑
k=2

k lg k ≤ 1

2
n2 lgn− 1

8
n2.

(Hint: Split the summation into two parts, one for k = 2, 3, . . . , dn/2e − 1 and one for k = dn/2e, . . . , n− 1.)

e. Using the bound from equation (7.7), show that the recurrence in equation (7.6) has the solution E[T (n)] = Θ(n lgn).
(Hint: Show, by substitution, that E[T (n)] ≤ an lgn for sufficiently large n and for some positive constant a.)

(a) In each recursive call to Randomized-Quicksort, the pivot is randomly chosen among the n elements of the input
subarray. Thus, we have

E[Xi] = Pr{Xi = 1} =
1

n
.

(b) Each call to Partition tales Θ(n) and once the qth

(c) Each call to Quicksort selects a pivot q, such that 1 ≤ q ≤ n, that partitions the array into two subarrays of sizes
q− 1 and n− q. The indicator random variable Xq indicates whether the element with index q is selected as the pivot.
Since only one element can be chosen as the pivot at a given call to Quicksort and the running time of each call is
Θ(n), the running time of Quicksort can be written as

T (n) =

n∑
q=1

Xq(T (q − 1) + T (n− q) + Θ(n)),

which implies

E[T (n)] = E

[
n∑
q=1

Xq(T (q − q) + T (n− q) + Θ(n))

]
.

(d)

E[T (n)] = E

[
n∑
q=1

Xq(T (q − q) + T (n− q) + Θ(n))

]

=

n∑
q=1

E[Xq(T (q − 1) + T (n− q) + Θ(n))]

=

n∑
q=1

(
1

n
· E[(T (q − 1) + T (n− q) + Θ(n))]

)

=
1

n
·
n∑
q=1

E[T (q − 1)] +
1

n
·
n∑
q=1

E[T (n− q)] +
1

n
·
n∑
q=1

Θ(n)

=
1

n
·
n−1∑
q=2

E[T (q)] +
1

n
·Θ(1) +

1

n
·
n−1∑
q=2

E[T (q)] +
1

n
·Θ(1) + Θ(n)

=
2

n
·
n−1∑
q=2

E[T (q)] + Θ(n).

87

CLRS – Chapter 7 – Quicksort Daniel Bastos Moraes

(e) We guess that
E[T (n)] ≤ an lgn,

for some constant a. Substituting into the recurrence yields

E[T (n)] ≤ 2

n

n−1∑
q=2

(aq lg q) + Θ(n)

=
2a

n

n−1∑
q=2

(q lg q) + Θ(n)

≤ 2a

n

(
1

2
n2 lgn− 1

8
n2

)
+ Θ(n)

= an lgn− a1

4
n+ Θ(n)

≤ an lgn,

since we pick the constant a large enough so that the a(1/4)n term dominates the Θ(n) term.

88

CLRS – Chapter 7 – Quicksort Daniel Bastos Moraes

7-4 Stack depth for quicksort
The Quicksort algorithm of Section 7.1 contains two recursive calls to itself. After Quicksort calls Partition, it recursively
sorts the left subarray and then it recursively sorts the right subarray. The second recursive call in Quicksort is not really
necessary; we can avoid it by using an iterative control structure. This technique, called tail recursion , is provided automatically
by good compilers. Consider the following version of quicksort, which simulates tail recursion:

Tail-Recursive-Quicksort(A, p, r)
1 while p < r do
2 // Partition and sort left subarray
3 q = Partition(A, p, r)
4 Tail-Recursive-Quicksort(A, p, q - 1)
5 p = q + 1

a. Argue that Tail-Recursive-Quicksort(A, 1, A.length) correctly sorts the array A.

Compilers usually execute recursive procedures by using a stack that contains pertinent information, including the parameter
values, for each recursive call. The information for the most recent call is at the top of the stack, and the information for the initial
call is at the bottom. Upon calling a procedure, its information is pushed onto the stack; when it terminates, its information is
popped . Since we assume that array parameters are represented by pointers, the information for each procedure call on the stack
requires O(1) stack space. The stack depth is the maximum amount of stack space used at any time during a computation.

b. Describe a scenario in which Tail-Recursive-Quicksort’s stack depth is Θ(n) on an n-element array.

c. Modify the code for Tail-Recursive-Quicksort so that the worst-case stack depth is Θ(lgn). Maintain the O(n lgn)
expected running time of the algorithm.

(a) After the Partition call, the algorithm calls itself with arguments A, p, q − 1, sets p = q + 1, and repeat the same
operations. Since the only difference to the next iteration is the new value of p, the loop is similar as calling itself with
arguments A, q + 1, r. Thus, Tail-Recursive-Quicksort produces the same result of Quicksort.

(b) If the Partition procedure always select the largest element of the array as the pivot, the left subarray will always
have size n− 1, and the stack depth will be Θ(n).

(c) To reduce the maximum stack depth, we should always give to the tail recursion the larger of the two subproblems.
The updated pseudocode is stated below.

Tail-Recursive-Quicksort-Improved(A, p, r)
1 while p < r do
2 // Partition and sort left subarray
3 q = Partition(A, p, r)
4 if q < (p+ r)/2 then
5 Tail-Recursive-Quicksort(A, p, q - 1)
6 p = q + 1

7 else
8 Tail-Recursive-Quicksort(A, q + 1, r)
9 r = q − 1

Each recursive call reduces the problem size by at least half. Thus, the stack depth is O(lgn).

89

CLRS – Chapter 7 – Quicksort Daniel Bastos Moraes

7-5 Median-of-3 partition
One way to improve the Randomized-Quicksort procedure is to partition around a pivot that is chosen more carefully than
by picking a random element from the subarray. One common approach is the median-of-3 method: choose the pivot as the
median (middle element) of a set of 3 elements randomly selected from the subarray. (See Exercise 7.4-6.) For this problem, let
us assume that the elements in the input array A[1, . . . , n] are distinct and that n ≥ 3. We denote the sorted output array by
A′[1, . . . , n]. Using the median-of-3 method to choose the pivot element x, define pi = Pr{x = A′[i]}.

a. Give an exact formula for pi as a function of n and i for i = 2, 3, . . . , n− 1. (Note that p1 = pn = 0.)

b. By what amount have we increased the likelihood of choosing the pivot as x = A′[b(n + 1)/2c], the median of A[1, . . . , n],
compared with the ordinary implementation? Assume that n→∞, and give the limiting ratio of these probabilities.

c. If we define a “good” split to mean choosing the pivot as x = A′[i], where n/3 ≤ i ≤ 2n/3, by what amount have we
increased the likelihood of getting a good split compared with the ordinary implementation? (Hint: Approximate the sum
by an integral.)

d. Argue that in the Ω(n lgn) running time of quicksort, the median-of-3 method affects only the constant factor.

(a) Note that the number of 3-permutations on a set of n elements is

n!

(n− 3)!
= n(n− 1)(n− 2).

To choose the element i as the pivot, one element needs to be within the first i− 1 positions of the array, one elements
needs to be within the last n − i positions of the array, and one element needs to be the ith element. Also note that
each combination of elements that chooses the element i as the pivot has 3! = 6 permutations; hence 6 ways to be
selected. Thus, we have

pi =
3! · 1 · (i− 1) · (n− i)

n!/(n− 3)!
=

6(i− 1)(n− i)
n(n− 1)(n− 2)

.

(b) We have

pb(n+1)/2c =
6 ·
(⌊

n+1
2

⌋
− 1
)(

n−
⌊
n+1
2

⌋)
n(n− 1)(n− 2)

≤
6 ·
(
n+1
2
− 1
) (
n− n+1

2

)
n(n− 1)(n− 2)

=
6 ·
(
n−1
2

) (
n−1
2

)
n(n− 1)(n− 2)

=
3

2
· (n− 1)(n− 1)

n(n− 1)(n− 2)

=
3

2
· (n− 1)

n(n− 2)
.

Then, we have the ratio

lim
n→∞

3
2
· n−1
n(n−2)

1
n

= lim
n→∞

3

2

n(n− 1)

n(n− 2)
=

3

2
= 1.5.

(c) To get a “good” split with the median-of-3 method, the pivot can not be within the first bn/3c elements or within the
last dn/3e elements. Thus, we have

Pr{good split with median-of-3} =

b2n/3c∑
i=dn/3e

pi ≈
2n/3∑
i=n/3

pi =

2n/3∑
i=n/3

6(i− 1)(n− i)
n(n− 1)(n− 2)

=
6

n(n− 1)(n− 2)
·

2n/3∑
i=n/3

(i−1)(n− i).

Note that
2n/3∑
x=n/3

(x− 1)(n− x) ≈
∫ 2n/3

n/3

(x− 1)(n− x)dx

=

∫ 2n/3

n/3

(nx− x2 − n+ x)dx

= −1

3
x3 +

1

2
x2(n+ 1)− xn

∣∣∣∣2n/3
n/3

=
13

162
n3 − 1

6
n2,

which implies

Pr{good split with median-of-3} ≈ 6

n(n− 1)(n− 2)

(
13

162
n3 − 1

6
n2

)
=

13
27
n3 − n2

n(n− 1)(n− 2)
.

90

CLRS – Chapter 7 – Quicksort Daniel Bastos Moraes

Then, we have the ratio

Pr{good split with median-of-3}
Pr{good split with one pivot} = lim

n→∞

13
27
n3−n2

n(n−1)(n−2)

1
3

= lim
n→∞

13
27
n3−n2

n3−n2−2n
1
3

= lim
n→∞

13
27
1
3

≈ 1.44.

(d) The only difference is on the choice of the pivot. However, even if the middle element is always chosen as the pivot
(which is the best case), the height of the recursion tree will be Θ(lgn). Since each recursion level takes Θ(n), the
running time is still Ω(n lgn).

91

CLRS – Chapter 7 – Quicksort Daniel Bastos Moraes

7-6 Fuzzy sorting of intervals
Consider a sorting problem in which we do not know the numbers exactly. Instead, for each number, we know an interval on the
real line to which it belongs. That is, we are given n closed intervals of the form [ai, bi], where ai ≤ bi. We wish to fuzzy-sort
these intervals, i.e., to produce a permutation 〈i1, i2, . . . , in〉 of the intervals such that for j = 1, 2, . . . , n, there exist cj ∈ [aij , bij]
satisfying c1 ≤ c2 ≤ · · · ≤ cn.

a. Design a randomized algorithm for fuzzy-sorting n intervals. Your algorithm should have the general structure of an
algorithm that quicksorts the left endpoints (the ai values), but it should take advantage of overlapping intervals to improve
the running time. (As the intervals overlap more and more, the problem of fuzzy-sorting the intervals becomes progressively
easier. Your algorithm should take advantage of such overlapping, to the extent that it exists.)

b. Argue that your algorithm runs in expected time Θ(n lgn) in general, but runs in expected time Θ(n) when all of the
intervals overlap (i.e., when there exists a value x such that x ∈ [ai, bi] for all i). Your algorithm shoukd not be checking
for this case explicitly; rather, its performance should naturally improve as the amount of overlap increases.

(a) Note that any subset of intervals that share a common point are already sorted. Using this notion, we can sort an
array of fuzzy intervals with an algorithm similar to quicksort, but with a customized partition procedure that returns
two indices q and t, where p ≤ q ≤ t ≤ r, such that

• There exist x such that x ∈ [ai, bi] for all q ≤ i ≤ t. That is, any permutation of the subarray A[q, . . . , t] is sorted;

• For all j < q, there exist cj ∈ [aj , bj] such that cj < bi for all q ≤ i ≤ t. That is, every interval of A[p, . . . , q − 1]
can stay before every interval of A[q, . . . , t] in the sorted array;

• For all j > t, there exist cj ∈ [aj , bj] such that cj > ai for all q ≤ i ≤ t. That is, every interval of A[t + 1, . . . , r]
can stay after every interval of A[q, . . . , t] in the sorted array.

The pseudocode is stated below.

Fuzzy-Partition(A, p, r)
1 a = A[r].a
2 b = A[r].b
3 i = j = p− 1
4 for k = p to r − 1 do
5 // A[k] can be placed before the pivot
6 if A[k].a ≤ b then
7 j = j + 1
8 exchange A[j] with A[k]
9 // intervals (A[k] and pivot) do not overlap

10 if A[j].b < a then
11 i = i+ 1
12 exchange A[i] with A[j]

13 // intervals (A[k] and pivot) overlap
14 else
15 if A[k].a > a then
16 a = A[k].a
17 if A[k].b < b then
18 b = A[k].b

19 exchange A[j + 1] with A[r]
20 q = i+ 1
21 t = j + 1
22 return q, t

Fuzzy-Randomized-Partition(A, p, r)
1 i = Random(p, r)
2 exchange A[r] with A[i]
3 return Fuzzy-Partition(A, p, r)

Fuzzy-Sort(A, p, r)
1 if p < r then
2 q, t = Fuzzy-Randomized-Partition(A, p, r)
3 Fuzzy-Sort(A, p, q − 1)
4 Fuzzy-Sort(A, t+ 1, r)

92

CLRS – Chapter 7 – Quicksort Daniel Bastos Moraes

(b) When all intervals share a common point, the array is already sorted. In this case, there will be only one call to
Fuzzy-Partition, which will return q = p and t = r. Thus, the algorithm will run in Θ(n).

The general case is a little tricky to proof.

93

CLRS – Chapter 8 – Sorting in Linear Time Daniel Bastos Moraes

Sorting in Linear Time

8.1 Lower bounds for sorting

8.1-1 What is the smallest possible depth of a leaf in a decision tree for a comparison sort?

The smallest possible depth of a leaf in a decision tree can be obtained by calculating the shortest simple path from the root
to any of its reachable leaves. This smallest path occurs when the comparisons is made in the sorted order. For instance, if
the input array is sorted, the following comparisons suffices

a1 ≤ a2,
a2 ≤ a3,

...

an−1 ≤ an.

Thus, the smallest depth of a leaf is any decision tree is n− 1 = Θ(n).

8.1-2 Obtain asymptotically tight bounds on lg(n!) without using Stirling’s approximation. Instead, evaluate the summation
∑n
k=1 lg k

using techniques from Section A.2.

Assume for convenience that n is even. For a lower bound, we have

lgn! = lg(n · (n− 1) · (n− 2) · · · 1)

=

n∑
k=1

lg k

=

n/2∑
k=1

lg k +

n∑
k=n/2+1

lg k

≥
n/2∑
k=1

0 +

n∑
k=n/2+1

lg(n/2)

=
n

2
lg
n

2

=
n

2
lgn− n

2

= Ω(n lgn).

And for an upper bound, we have
lgn! = lg(n · (n− 1) · (n− 2) · · · 1)

=

n∑
k=1

lg k

≤
n∑
k=1

lgn

= O(n lgn).

Thus, lgn! = Θ(n lgn).

94

CLRS – Chapter 8 – Sorting in Linear Time Daniel Bastos Moraes

8.1-3 Show that there is no comparison sort whose running time is linear for at least half of the n! inputs of length n. What about a
fraction of 1/n of the inputs of length n? What about a fraction 1/2n?

Such algorithm only exists if we can build a decision tree such that at least n!/2 of its n! leaves has a depth of Θ(n). Suppose
this decision tree exists. Let m be the depth of the leaf with the (n!/2)th smallest depth. Remove all nodes with depth
greater than m. The result is a decision tree with height m and at least n!/2 leaves. Using the same reasoning as in the
proof of Theorem 8.1, for every decision tree with at least n!/2 leaves, we have

n!

2
≤ l ≤ 2m,

which implies

m ≥ lg
n!

2
= lgn!− 1 = Ω(n lgn),

which proves that such a decision tree does not exists. The same reasoning can be applied to obtain the maximum depth of
any fraction of the inputs. For a fraction of 1/n, we have

m ≥ lg
n!

n
= lg n!− lgn = Ω(n lgn),

and for a fraction of 1/2n, we have

m ≥ lg
n!

2n
= lgn!− lg 2n = lg n!− n = Ω(n lgn).

8.1-4 Suppose that you are given a sequence of n elements to sort. The input sequence consists of n/k subsequences, each containing
k elements. The elements in a given subsequence are all smaller than the elements in the succeeding subsequence and larger
than the elements in the preceding subsequence. Thus, all that is needed to sort the whole sequence of length n is to sort the
k elements in each of the n/k subsequences. Show an Ω(n lg k) lower bound on the number of comparisons needed to solve this
variant of the sorting problem. (Hint : It is not rigorous to simply combine the lower bounds for the individual subsequences.)

All we know is the ordering of the elements of a given subsequence with respect to the elements of the previous/next
subsequence. Thus, for each subsequence, we have k! possible permutations. Since there are n/k input subsequences, the
number of possible outcomes for this sorting problem is

n/k∏
i=1

k! = k!(n/k).

We can use here the same argument used in the text book to prove a lower bound for any comparison sort algorithm.
However, in this case, the number of possible permutations is k!(n/k), instead of n!. Thus, we need to show that the height
of any decision tree with at least k!(n/k) leaves is Ω(n lg k). We have

k!n/k ≤ l ≤ 2h,

which implies

h ≥ lg
(
k!(n/k)

)
=
n

k
· lg k!

=
n

k
·
k∑
i=1

lg i

=
n

k
·
bk/2c∑
i=1

lg i+
n

k
·

k∑
i=bk/2c+1

lg i

≥ n

k
·

k∑
i=bk/2c

lg i

≥ n

k
·
(
k

2
lg
k

2

)
=
n

2
lg
k

2

= Ω(n lg k).

95

CLRS – Chapter 8 – Sorting in Linear Time Daniel Bastos Moraes

8.2 Counting sort

8.2-1 Using Figure 8.2 as a model, illustrate the operation of Counting-Sort on the array A = 〈6, 0, 2, 0, 1, 3, 4, 6, 1, 3, 2〉.

1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6
A 6 0 2 0 1 3 4 6 1 3 2 C 2 2 2 2 1 0 2

C 2 4 6 8 9 9 11

B – – – – – 2 – – – – – C 2 4 5 8 9 9 11

B – – – – – 2 – 3 – – – C 2 4 5 7 9 9 11

B – – – 1 – 2 – 3 – – – C 2 3 5 7 9 9 11

B – – – 1 – 2 – 3 4 – 6 C 2 3 5 7 8 9 10

B – – – 1 – 2 3 3 4 – 6 C 2 3 5 6 8 9 10

B – – 1 1 – 2 3 3 4 – 6 C 2 2 5 6 8 9 10

B – 0 1 1 – 2 3 3 4 – 6 C 1 2 5 6 8 9 10

B – 0 1 1 2 2 3 3 4 – 6 C 1 2 4 6 8 9 10

B 0 0 1 1 2 2 3 3 4 – 6 C 0 2 4 6 8 9 10

B 0 0 1 1 2 2 3 3 4 6 6 C 0 2 4 6 8 9 9

8.2-2 Prove that Counting-Sort is stable.

Suppose that the integer x appears k times in the output array. Since the for loop of lines 10-12 iterates over the input array
backwards, the first integer x to be added to the output array on line 11 is the rightmost one. The decrement of the couting
of x on line 12 ensures that the next integer x is added to the output array right before the previous one. This process
repeats k times, until the leftmost integer x is added to the output array (k − 1 positions before the rightmost one). This
property ensures that elements with equal value in the input array appears in the same order in the output array. Thus, the
algorithm is stable.

8.2-3 Suppose that we were to rewrite the for loop header in line 10 of the Counting-Sort as

10 for j = 1 to A.length

Show that the algorithm still works properly. Is the modified algorithm stable?

The only difference will be in the for loop of lines 10-12, in which elements with equal value in the input array will now be
added to the output array in the same order as they appear in the input array. As observed on Question 8.2-2, each time
an element with value x is added to the output array, the next element with value x is added right before the previous one.
This implies that elements with equal value in the input array will appear in reverse order in the output array. Thus, this
modified algorithm is not stable.

8.2-4 Describe an algorithm that, given n integers in the range 0 to k, preprocesses its input and then answers any query about how
many of the n integers fall into a range [a . . . b] in O(1) time. Your algorithm should use Θ(n+ k) preprocessing time.

For the preprocessing phase, build the array C in the same way it is built in the Couting-Sort procedure (lines 1-8). This
preprocessing will run in Θ(k) + Θ(n) + Θ(k) = Θ(n+ k). If a > 0, answer C[b]− C[a− 1]. Otherwise, answer C[b].

96

CLRS – Chapter 8 – Sorting in Linear Time Daniel Bastos Moraes

8.3 Radix sort

8.3-1 Using Figure 8.3 as a model, illustrate the operation of Radix-Sort on the following list of English words: COW, DOG, SEA,
RUG, ROW, MOB, BOX, TAB, BAR, EAR, TAR, DIG, BIG, TEA, NOW, FOX.

COW
DOG
SEA
RUG
ROW
MOB
BOX
TAB
BAR
EAR
TAR
DIG
BIG
TEA
NOW
FOX

→

SEA
TEA
MOB
TAB
DOG
RUG
DIG
BIG
BAR
EAR
TAR
COW
ROW
NOW
BOX
FOX

→

TAB
BAR
EAR
TAR
SEA
TEA
DIG
BIG
MOB
DOG
COW
ROW
NOW
BOX
FOX
RUG

→

BAR
BIG
BOX
COW
DIG
DOG
EAR
FOX
MOB
NOW
ROW
RUG
TAB
TAR
TEA
SEA

8.3-2 Which of the following sorting algorithms are stable: insertion sort, merge sort, heapsort, and quicksort? Give a simple scheme
that makes any comparison sort stable. How much additional time and space does your scheme entail?

Insertion-Sort and Merge-Sort are stable. Heapsort and Quicksort are not. To make any sorting algorithm stable,
we can store the original index of each element in the array and use this index to break ties. The additional space required
is Θ(n). The asymptotic running time is the same, since the number of comparisons will be at most twice.

8.3-3 Use induction to prove that radix sort works. Where does your proof need the assumption that the intermediate sort is stable?

Let d be the number of columns in the input array, where the dth column contains the highest-order digit. Radix-Sort sorts
one column at a time, from the column with the lowest-order digits to the column with the highest-order digits. The base
case occurs when d = 1. Since in this case the elements on the array has a single digit, calling Radix-Sort in this case is
the same as calling its sorting subroutine directly with the input array as an argument. Thus, Radix-Sort is correct when
d = 1. Now assume Radix-Sort works for d−1 columns. Note that sorting d columns is equivalent to sorting d−1 columns
followed by calling the sorting subroutine on the dth column. The induction hypothesis ensures that Radix-Sort sorts d−1
columns correctly. Since the sorting subroutine is stable, when sorting the dth column, digits that have the same value in
the dth column will be kept in the same order as it was after sorting the (d− 1)th column. This implies that Radix-Sort
breaks ties on higher-order digits by the lower-order digits, which is correct.

The sorting subroutine must be stable since a tie that occur while sorting the ith digit is determined by the previous sorts of
the lower-order digits. Since lower-order digits are sorted before higher-order digits, this property is ensured with an stable
sorting algorithm.

8.3-4 Show how to sort n integers in the range 0 to n3 − 1 in O(n) time.

An integer in the range 0 to n3− 1 is represented with at most lgn3 = 3 lgn bits. We can view a (3 lgn)-bit integer as three
(lgn)-bit integers, so that b = 3 lgn and r = lgn. With these settings, Radix-Sort correctly sorts these numbers in

Θ

(
b

r
(n+ 2r)

)
= Θ

(
3 lgn

lgn

(
n+ 2lgn

))
= Θ(3(n+ n)) = Θ(n).

97

CLRS – Chapter 8 – Sorting in Linear Time Daniel Bastos Moraes

8.3-5 (?) In the first card-sorting algorithm in this section, exactly how many sorting passes are needed to sort d-digit decimal numbers
in the worst case? How many piles of cards would an operator need to keep track of in the worst case?

Suppose that the card-sorting machine represents numbers in base p, such that 2 ≤ p ≤ 10. For a given value of p, we have

• Each card uses c = dlogp 10de columns;

• Each column uses up to p places.

Let cth-digit denote the most significant digit, the (c− 1)th-digit denote the 2nd most significant digit, and so on.

The algorithm is recursive. It starts sorting on the cth-digit, which requires p piles to distribute the cards in the worst-case.
In the next level, the algorithm sorts each of the p piles on the (c− 1)th-digit, which requires p2 piles to distribute the cards
in the worst-case (each of the p piles is splitted into p piles). This process goes for c levels. Since the piles of the previous
level can be reutilized in the current level, the number of piles required to distribute the cards in all levels is the number of
piles required in the last level, which is

pc.

Note that to sort the cards on the cth-digit, only one sorting pass is needed to distribute the cards into p piles. To sort on
the next digit, these p piles that were sorted on the cth-digit must now be sorted on the (c − 1)th-digit, which will require
another p1 sorting passes to distribute them into p2 piles. In general, to sort on the ith digit, pc−i sorting passes are required
in the worst-case. Thus, the number of sorting passes in the worst-case is

c∑
i=1

pc−i =

c−1∑
i=0

pi =
pc − 1

p− 1
.

98

CLRS – Chapter 8 – Sorting in Linear Time Daniel Bastos Moraes

8.4 Bucket sort

8.4-1 Using Figure 8.4 as a model, illustrate the operation of Bucket-Sort on the array A = 〈.79, .13, .16, .64, .39, .20, .89, .53, .71, .42〉.

A

.791

.132

.163

.644

.395

.206

.897

.538

.719

.4210

B

0

1 .13 .16

2 .20

3 .39

4 .42

5 .53

6 .64

7 .79 .71

8 .89

9

8.4-2 Explain why the worst-case running time for bucket sort is Θ(n2). What simple change to the algorithm preserves its linear
average-case running time and makes its worst-case running time O(n lgn)?

The worst-case occurs when the input array is in decreasing order and every element falls into the same bucket. Since
Insertion-Sort takes Θ(n2) to sort an array of size n that is in decreasing order, bucket sort will run in Θ(n2).

The worst-case running time can be improved replacing Insertion-Sort with Heapsort, which will make it run in O(n lgn).
As for the average-case, the expected running time of this variation of bucket sort is

E[T (n)] = E

[
Θ(n) +

n−1∑
i=0

O(ni lgni)

]

= Θ(n) +

n−1∑
i=0

E[O(ni lgni)]

= Θ(n) +

n−1∑
i=0

O(E[ni lgni]).

Using the same logic adopted in the text book to compute E[n2
i], we have

ni =

n∑
j=1

Xij ,

which implies

E[ni lgni] = E

[
n∑
j=1

Xij lg

n∑
j=1

Xij

]

≤ E

[
n∑
j=1

Xij

n∑
j=1

Xij

]

= 2− 1

n
. (from equation (8.2))

Thus, the average-case running time of this variation of bucket sort is

E[T (n)] = Θ(n) +

n−1∑
i=0

O

(
2− 1

n

)
= Θ(n) + n ·O (1) = Θ(n).

99

CLRS – Chapter 8 – Sorting in Linear Time Daniel Bastos Moraes

8.4-3 Let X be a random variable that is equal to the number of heads in two flips of a fair coin. What is E[X2]? What is E2[X]?

Lets define the indicator random variable
Xi = I{flip i comes up heap}.

Thus, we have
X = X1 +X2,

and
X2 = (X1 +X2)2 = X2

1 + 2X1X2 +X2
2 .

Note that

E[Xi] = Pr{Xi = 1} =
1

2
,

and

E[X2
i] = 12 · 1

2
+ 02 · 1

2
=

1

2
.

Using the above definitions and linearity of expectation, we have

E[X2] = E[X2
1 + 2X1X2 +X2

2]

= E[X2
1] + 2E[X1X2] + E[X2

2]

=
1

2
+ 2 (E[X1]E[X2]) +

1

2
(since X1 and X2 are independent)

=
1

2
+ 2

(
1

2
· 1

2

)
+

1

2

=
3

2
,

and
E2[X] = E2[X1 +X2]

= E[X1 +X2]E[X1 +X2]

= (E[X1] + E[X2])(E[X1] + E[X2])

=

(
1

2
+

1

2

)(
1

2
+

1

2

)
= 1.

100

CLRS – Chapter 8 – Sorting in Linear Time Daniel Bastos Moraes

8.4-4 (?) We are given n points in the unit circle, pi = (xi, yi), such that 0 < x2i + y2i ≤ 1 for i = 1, 2, . . . , n. Suppose that the points
are uniformly distributed; that is, the probability of finding a point in any region of the circle is proportional to the area of that
region. Design an algorithm with an average-case running time of Θ(n) to sort the n points by their distances di =

√
x2i + y2i

from the origin. (Hint: Design the bucket sizes in Bucket-Sort to reflect the uniform distribution of the points in the unit
circle.)

Considering that the points are uniformly distributed over the area of the unit circle, we can divide the circle into n rings
with equal area, such that the expected number of points in each ring is 1. The figure below illustrates a circle that is divided
into three rings with equal area.

. 1 2 3

We them assign to the ith bucket the points that falls within the ith ring, sort each bucket individually with Insertion-Sort,
and combine the elements of each bucket sequentially. This is basically the Bucket-Sort algorithm with a modification on
the way we assign the elements to the buckets. Since the distribution of points over the buckets is uniform, the average-case
running time of this algorithm is still O(n).

We now need a function that maps a point to its bucket. Let ri denote the (larger) radius of the ith ring. We claim that

ri =

√
i√
n
,

which implies that a point pj belongs to the ith ring if, and only if,√
i− 1

n
< dj ≤

√
i

n
,

squaring both sides and multiplying by n, we have

i− 1 < d2j · n ≤ i,

which implies
i = dd2j · ne.

Proof for the radius of the ith ring.

Since the area of the unit circle is π and each ring has equal area, for i > 0, we have

πr2i − πr2i−1 =
π

n
,

which implies

ri =

√
1

n
+ r2i−1.

Note that

r1 =

√
1

n
+ 02 =

√
1√
n
,

r2 =

√√√√ 1

n
+

(√
1

n

)2

=

√
2√
n
,

r3 =

√√√√ 1

n
+

(√
2

n

)2

=

√
3√
n
,

which lead us to assume that

ri =

√
i√
n
,

for i = 0, 1, . . . , n. We shall prove it by induction. Note that it holds for i = 0, since

r0 =

√
0√
n

= 0.

To show that it holds for i > 0, we need to show that if it holds for i, it also holds for i+ 1. We have

ri+1 =

√√√√ 1

n
+

(√
i

n

)2

=

√
i+ 1

n
=

√
i+ 1√
n

,

which proves the inductive step.

101

CLRS – Chapter 8 – Sorting in Linear Time Daniel Bastos Moraes

8.4-5 (?) A probability distribution function P (x) for a random variable X is defined by P (x) = Pr{X ≤ x}. Suppose that we
draw a list of n random variables X1, X2, . . . , Xn from a continuous probability distribution function P that is computable in
O(1) time. Give an algorithm that sorts these numbers in linear average-case time.

Skipped.

102

CLRS – Chapter 8 – Sorting in Linear Time Daniel Bastos Moraes

Problems

8-1 Probabilistic lower bounds on comparison sorting
In this problem, we prove a probabilistic Ω(n lgn) lower bound on the running time of any deterministic or randomized comparison
sort on n distinct input elements. We begin by examining a deterministic comparison sort A with decision tree TA. We assume
that every permutation of A’s inputs is equally likely.

a. Suppose that each leaf of TA is labeled with the probability that it is reached given a random input. Prove that exactly n!
leaves are labeled 1/n! and that the rest are labeled 0.

b. Let D(T) denote the external path length of a decision tree T ; that is, D(T) is the sum of the depths of all the leaves
of T . Let T be a decision tree with k > 1 leaves, and let LT and RT be the left and right subtrees of T . Show that
D(T) = D(LT) +D(RT) + k.

c. Let d(k) be the minimum value of D(T) over all decision trees T with k > 1 leaves. Show that d(k) = min1≤i≤k−1{d(i) +
d(k − i) + k}. (Hint: Consider a decision tree T with k leaves that achieves the minimum. Let i0 be the number of leaves
in LT and k − i0 the number of leaves in RT .)

d. Prove that for a given value of k > 1 and i in the range 1 ≤ i ≤ k − 1, the function i lg i+ (k − i) lg(k − i) is minimized at
i = k/2. Conclude that d(k) = Ω(k lg k).

e. Prove that D(TA) = Ω(n! lg(n!)), and conclude that the average-case time to sort n elements is Ω(n lgn).

Now, consider a randomized comparison sort B. We can extend the decision-tree model to handle randomization by incorporating
two kinds of nodes: ordinary comparison nodes and “randomization” nodes. A randomization node models a random choice of
the form Random(l, r) made by algorithm B; the node has r children, each of which is equally likely to be chosen during an
execution of the algorithm.

f. Show that for any randomized comparison sort B, there exists a deterministic comparison sort A whose expected number
of comparisons is no more than those made by B.

(a) First note that there are n! distinct permutations of an input of size n with distinct elements. To be a valid decision
tree, TA must have each of these permutations as a reachable leaf. Since every permutation is equally likely, each of
these leaves must be reachable with probability 1/n!. If TA has any additional leaf, it is not reachable for any input
and has probability 0.

(b) Note that, since k > 1, the root of T if not a leaf. Also, the only node that is present in T and is not present in the
subtrees LT and RT together is the root of T . This implies that each leaf at depth d in T is either in LT or in RT ,
but at depth d− 1. Since there are k leaves in T , we have D(T) = D(LT) +D(RT) + k.

(c) First, we will show that
d(k) ≤ min

1≤i≤k−1
{d(i) + d(k − i) + k},

by showing that
d(k) ≤ d(i) + d(k − i) + k,

for i = 1, . . . , k − 1. For every i such that 1 ≤ i ≤ k − 1, there exist decision trees LT and RT with i leaves and k − i
leaves, respectivelly, such that D(LT) = d(i) and D(RT) = d(k− i). Let T be a decision tree composed by a root node
and LT and RT as its left and right subtrees, respectivelly. Note that T has k leaves, since it has all the leaves from
LT and RT , and its root is not a leaf. Then, we have

d(k) ≤ D(T) (from the definition of d(·))
= D(LT) +D(RT) + k (from item (b))

= d(i) + d(k − i) + k.

Now, we will show that
d(k) ≥ min

1≤i≤k−1
{d(i) + d(k − i) + k},

by showing that
∃ i ∈ 1, . . . , k − 1 | d(k) ≥ d(i) + d(k − i) + k.

Let T be a decision tree with k leaves such that D(T) = d(k). Let LT and RT be the left and right subtrees of T and
let i and k − i be the number of leaves of LT and RT , respectivelly. We have

d(k) = D(T) (from the definition of T)

= D(LT) +D(RT) + k (from item (b))

≥ d(i) + d(k − i) + k.

Then, we can conclude that
d(k) = min

1≤i≤k−1
{d(i) + d(k − i) + k}.

103

CLRS – Chapter 8 – Sorting in Linear Time Daniel Bastos Moraes

(d) Let f(i) = i lg i+ (k − i) lg(k − i). We have

f ′(i) =
d

di
(i lg i+ (k − i) lg(k − i))

=
d

di

(
i ln i+ (k − i) ln(k − i)

ln 2

)
=

d

di

(
i ln i

ln 2
+

(k − i) ln(k − i)
ln 2

)
=

1 + ln i

ln 2
+
−1− ln(k − i)

ln 2

=
ln i− ln(k − i)

ln 2

= lg i− lg(k − i),

which is 0 when i = k/2. Also note that

f ′(1) = f ′(k − 1) = ln(k − 1) ≥ ln 1 = 0 = f(k/2),

which implies that the point i = k/2 is a minimum. We shall now prove that d(k) = Ω(k lg k). Our guess is

d(i) ≥ ci lg i ∀ 1 ≤ i ≤ k − 1,

where c is a positive constant. Substituting into the recurrence, yields

d(k) = min
1≤i≤k−1

{d(i) + d(k − i) + k}

≥ min
1≤1≤k−1

{c(i lg i+ (k − i) lg(k − i)) + k}

= min
1≤1≤k−1

{cf(i) + k}

= cf

(
k

2

)
+ k

= c

(
k

2
lg
k

2
+
k

2
lg
k

2

)
+ k

= ck lg
k

2
+ k

= ck lg k − ck + k

≥ ck lg k,

where the last step holds as long as c ≤ 1.

(e) Since TA has n! leaves, we have
D(TA) ≥ d(n!) = Ω(n! lgn!).

Note that the external path length of a decision tree denotes the number of comparisons needed to sort every possible
permutation of an input of size n. Since each of the n! permutations have the same probability of happening (from
item (a)), the expected number of comparisons for each input is

Ω(n! lg(n!))

n!
= Ω(lg(n!))

= Ω(n lgn). (from (3.19))

(f) Just replace each randomization node with one of its subtrees, particularly the one with the smaller external path. The
result is a valid deterministic tree with no more comparisons than the radomized tree. Thus, we can conclude that the
number of comparisons for any randomized comparison sort is also Ω(n lgn).

104

CLRS – Chapter 8 – Sorting in Linear Time Daniel Bastos Moraes

8-2 Sorting in place in linear time
Suppose that we have an array of n data records to sort and that the key of each record has the value 0 or 1. An algorithm for
sorting such a set of records might possess some subset of the following three desirable characteristics:

1. The algorithm runs in O(n) time.

2. The algorithm is stable.

3. The algorithm sorts in place, using no more than a constant amount of storage space in addition to the original array.

a. Give an algorithm that satisfies criteria 1 and 2 above.

b. Give an algorithm that satisfies criteria 1 and 3 above.

c. Give an algorithm that satisfies criteria 2 and 3 above.

d. Can you use any of your sorting algorithms form parts (a)−(c) as the sorting method used in line 2 of Radix-Sort, so that
Radix-Sort sorts n records with b-bit keys in O(bn) time? Explain how or why not.

e. Suppose that the n records have keys in the range from 1 to k. Show how to modify counting sort so that it sorts the
records in place in O(n+k) time. You may use O(k) storage outside the input array. Is your algorithm stable? (Hint: How
would you do it for k = 3?)

(a) The following is a modified Counting-Sort for data records. If runs in Θ(n), is stable, but do not sort in place.

Counting-Sort-Binary-Records(A, B)
1 one-pos = 1
2 zero-pos = 1
3 for i = 1 to A.length do
4 key = A[i].key
5 if key == 0 then
6 one-pos = one-pos + 1

7 for i = 1 to A.length do
8 key = A[i].key
9 if key == 0 then

10 B[zero-pos] = A[i]
11 zero-pos = zero-pos + 1

12 else
13 B[one-pos] = A[i]
14 one-pos = one-pos + 1

(b) The following uses a technique similar to the one used for the Hoare-Partition, introduced on Question 7-1. It runs
in Θ(n), sorts in place, but is not stable.

InPlace-Sort-Binary-Records(A)
1 i = 1
2 j = A.length
3 while True do
4 while j > i and A[j].key == 1 do
5 j = j − 1
6 while i < j and A[i].key == 0 do
7 i = i+ 1
8 if i < j then
9 swap A[i] with A[j]

10 else
11 break

(c) The following is a modified Insertion-Sort for data records. It is stable, sorts in place, but is not linear.

Insertion-Sort-Binary-Records(A)
1 for j = 2 to A.length do
2 key = A[j].key
3 i = j − 1
4 while i > 0 and A[i].key > key do
5 A[i+ 1] = A[i]
6 i = i− 1

7 A[i+ 1] = key

105

CLRS – Chapter 8 – Sorting in Linear Time Daniel Bastos Moraes

(d) To be used as a subroutine of Radix-Sort, the sorting algorithm must be stable. Also, in order to Radix-Sort run
in O(bn) time, the sorting subroutine must run in O(n). The only algorithm that satisfies both of these constraints is
the one on part (a).

(e) Roughly speaking, instead of copying each element to its correct position in a new array, we swap each element with
the element that is in its correct position. The algorithm runs in Θ(n + k), sorts in place, but is not stable. The
pseudocode is stated below.

Counting-Sort-InPlace(A, k)
1 let C[0, . . . , k] be a new array
2 let T [0, . . . , k] be a new array
3 for i = 0 to k do
4 C[i] = 0
5 for i = 1 to A.length do
6 key = A[i].key
7 C[key] = C[key] + 1

8 for i = 1 to k do
9 C[i] = C[i] + C[i− 1]

10 for i = 0 to k do
11 T [i] = C[i]
12 pos = 1
13 while pos < A.length do
14 key = A[pos].key
15 if C[key] > pos then
16 swap A[pos] with A[C[key]]
17 C[key] = C[key]− 1

18 else
19 pos = pos + T [key]

106

CLRS – Chapter 8 – Sorting in Linear Time Daniel Bastos Moraes

8-3 Sorting variable-length items

a. You are given an array of integers, where different integers may have different numbers of digits, but the total number of
digits over all the integers in the array is n. Show how to sort the array in O(n) time.

b. You are given an array of strings, where different strings may have different numbers of characters, but the total number
of characters over all the strings is n. Show how to sort the strings in O(n) time. (Note that the desired order here is the
standard alphabetical order; for example, a < ab < b.)

(a) Let m denote the number of integers in the input array. Start sorting the numbers by their sign, using an algorithm
similar to Counting-Sort-Binary-Records, in which negative numbers are placed before positive numbers. This
step runs in O(m). Let mpos and mneg denote the number of positive and negative integers, respectivelly. For each
group of numbers with the same sign, sort the elements in the group by their number of digits with Counting-Sort.
This step will take O(mpos + n) +O(mneg + n) = O(n). Let mi denote the number of integers with i digits. For each
group of numbers with i digits, sort the elements in the group with Radix-Sort. Since each call to Radix-Sort runs
in O(i · (mi + 10)) = O(i ·mi), this step will take

n∑
i=1

O(i ·mi) = O

(
n∑
i=1

(i ·mi)

)
= O(n).

Thus, the running time of this algorithm is

O(m+ n+ n) = O(n).

(b) Note that, different from the problem of sorting integers, we can not use the length of the string to sort the elements –
strings with longer length does not imply any order with respect to strings with smaller length. However, the leftmost
character of each string does imply an order. When the first character of two strings are the same, the strings are untied
by their following character, and so on until the last character. We can use this notion to derive a recursive algorithm
that sorts and groups the strings by their first character, and recursively sorts each group by their following character.
Note that strings that do not have the current character should be placed before the ones that does have the character.
Since the range of characters is constant, we can sort each group using counting sort in linear time on the number of
elements in the group. To avoid creating multiple subarrays in each recursion call, Counting-Sort-InPlace is more
suitable.

Let m denote the number of strings in the input array and let ni denote the number of characters in the ith string.
Since counting sort is linear on the number of elements being sorted and the ith string are considered in at most ni + 1
calls of counting sort (one additional time for the special case when the string does not have the following character),
the total cost of this algorithm is

O

(
m∑
i=1

(ni + 1)

)
= O

(
m∑
i=1

ni +m

)
= O(n+m) = O(n).

107

CLRS – Chapter 8 – Sorting in Linear Time Daniel Bastos Moraes

8-4 Water jugs
Suppose that you are given n red and n blue water jugs, all of different shapes and sizes. All red jugs hold different amounts of
water, as do the blue ones. Moreover, for every red jug, there is a blue jug that holds the same amount of water, and vice versa.

Your task is to find a grouping of the jugs into pairs of red and blue jugs that hold the same amount of water. To do so, you may
perform the following operation: pick a pair of jugs in which one is red and one is blue, fill the red jug with water, and then pour
the water into the blue jug. This operation will tell you whether the red or the blue jug can hold more water, or that they have
the same volume. Assume that such a comparison takes one time unit. Your goal is to find an algorithm that makes a minimum
number of comparisons to determine the grouping. Remember that you may not directly compare two red jugs or two blue jugs.

a. Describe a deterministic algorithm that uses Θ(n2) comparisons to group the jugs into pairs.

b. Prove a lower bound of Ω(n lgn) for the number of comparisons that an algorithm solving this problem must take.

c. Give a randomized algorithm whose expected number of comparisons is O(n lgn), and prove that this bound is correct.
What is the worst-case number of comparisons for your algorithm?

(a) A brute-force algorithm runs in Θ(n2). Compare the volume of each red jub to each blue jug until a match is found.
The pseudocode is stated below.

Water-Jugs-Brute-Force(R, B)
1 n = R.length
2 let P be a new array of size n
3 for i = 1 to n do
4 for j = 1 to n do
5 if Volume(R[i]) == Volume(B[j]) then
6 P [i] = (R[i], B[j])
7 break

(b) We shall use a decision tree to compute a lower bound on the worst-case number of comparisons needed to solve this
problem. Let each node on the tree be a comparison between one red jug and one blue jug. Each comparison results
in one of three results, which implies that each non-leaf node in the decision tree has three children. To compute the
number of leaves, note that this problem is the same as sorting the array of blue jugs based on the current order of
the array of red jugs. Since the elements of each array are distinct, there are n! different permutations of the array
of blue jugs array and only one of them correspond to the order of the array of red jugs, which then implies that the
decision tree must have at least n! leaves. Note that the height h of the decision tree is equal to the worst-case number
of comparisons needed to solve the problem. Thus, we have

3h ≥ n!,

which implies
h ≥ log3(n!)

=
lgn!

lg 3

=
Ω(n lgn)

lg 3
(from (3.19))

= Ω(n lgn).

(c) We can use an algorithm very similar to Randomized-Quicksort. The partition procedure also need to be updated
in order to receive the pivot as an argument. The pseudocode is stated below.

Partition-Jugs(A, s, e, x)
1 i = s− 1
2 for j = s to e− 1 do
3 vj = Volume(A[j])
4 vx = Volume(x)
5 if vj == vx then
6 exchange A[j] with A[e]
7 if vj < vx then
8 i = i+ 1
9 exchange A[i] with A[j]

10 exchange A[i+ 1] with A[e]
11 return i+ 1

108

CLRS – Chapter 8 – Sorting in Linear Time Daniel Bastos Moraes

Group-Jugs(R, B, s, e, G)
1 if e < s then
2 return
3 else if e == s then
4 Insert(G, (R[s], B[s]))
5 else
6 i = Random(s, e)
7 b = Partition-Jugs(B, s, e, R[i])
8 r = Partition-Jugs(R, s, e, B[b])
9 Insert(G, (R[r], B[b]))

10 Group-Jugs(R,B, s, i− 1)
11 Group-Jugs(R,B, i+ 1, e)

The analysis this algorithm is almost the same as the analysis of Randomized-Quicksort, which gives an expected
running time of O(n lgn). Also just like in Randomized-Quicksort, the worst-case occurs when partition always
make bad partitions, which gives a running time of Θ(n2).

109

CLRS – Chapter 8 – Sorting in Linear Time Daniel Bastos Moraes

8-5 Suppose that, instead of sorting an array, we just require that the elements increase on average. More precisely, we call an
n-element array A k-sorted if, for all i = 1, 2, . . . , n− k, the following holds:∑i+k−1

j=i A[j]

k
≤
∑i+k
j=i+1A[j]

k
.

a. What does it mean for an array to be 1-sorted?

b. Give a permutation of the numbers 1, 2, . . . , 10 that is 2-sorted, but not sorted.

c. Prove that an n-element array is k-sorted if and only if A[i] ≤ A[i+ k] for all i = 1, 2, . . . , n− k.

d. Give an algorithm that k-sorts an n-element array in O(n lg(n/k)) time.

We can also show a lower bound on the time to produce a k-sorted array, when k is a constant.

e. Show that we can sort a k-sorted array of length n in O(n lg k) time. (Hint: Use the solution to Exercise 6.5-9.)

f. Show that when k is a constant, k-sorting an n-element array requires Ω(n lgn) time. (Hint: Use the solution to the
previous part along with the lower bound on comparison sorts.)

(a) It means that it is sorted.

(b) 〈2, 1, 4, 3, 6, 5, 8, 7, 10, 9〉.
(c) Note that ∑i+k−1

j=i A[j]

k
=

∑i+k−1
j=i+1 A[j]

k
+
A[i]

k
,

and ∑i+k
j=i+1A[j]

k
=

∑i+k−1
j=i+1 A[j]

k
+
A[i+ k]

k
.

Thus, we have∑i+k−1
j=i+1 A[j]

k
+
A[i]

k
≤
∑i+k−1
j=i+1 A[j]

k
+
A[i+ k]

k
⇐⇒ A[i]

k
≤ A[i+ k]

k
. ⇐⇒ A[i] ≤ A[i+ k].

(d) We can use a modification of Randomized-Quicksort that only sorts subarrays with size greater than k. The modified
pseudocode is stated below.

Randomized-Quicksort-K(A, p, r, k)
1 if r − p ≥ k then
2 q = Randomized-Partition(A, p, r)
3 Randomized-Quicksort(A, p, q − 1, k)
4 Randomized-Quicksort(A, q + 1, r, k)

Correctness can be seen as follows. Note that at the start of each recursive call of Randomized-Quicksort-K, every
element of the subarray A[p, . . . , r] is greater than or equal to the elements before the subarray and is smaller than
or equal to the elements after the subarray. That is, at the start of each recursive call, the elements of the subarray
A[p, . . . , r] can only be inverted with themselves. Since the base case of the recursion occurs when r − p < k, after
running Randomized-Quicksort-K we can ensure that every inversion (i, j) has j− i < k → j < i+ k, which implies

A[i] ≤ A[i+ k],

for all i = 1, 2, . . . , n− k. From item (c), this property implies that the array is correctly k-sorted.

As for the running time, we can use a similar argument as the one used on question 7.4-5. Thus, the expected running
time of Randomized-Quicksort-K is O

(
n lg n

k

)
.

(e) A k-sorted array is composed of k 1-sorted subarrays where the ith subarray, i = 0, 1, . . . , k − 1, is formed by the
elements with index j such that j mod k = i. For instance, the following 2-sorted array has two 1-sorted subarrays:

2 1 4 3 6 5 8 7 10 9

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

The Merge-Lists-Min-Heap algorithm (Question 6-5.9) can be used to merge these k subarrays in O(n lg k)-time.

(f) Item (e) shows that a k-sorted array has k 1-sorted subarrays. Note that each of these subarrays must have at least
bn/kc elements. Thus, since k is a constant, the lower bound to sort each of these subarrays is

Ω
(n
k

lg
n

k

)
= Ω

(n
k

lgn− n

k
lg k
)

= Ω(n lgn),

which implies that Ω(n lgn) is also the lower bound to k-sort the whole array.

110

CLRS – Chapter 8 – Sorting in Linear Time Daniel Bastos Moraes

8-6 Lower bound on merging sorted lists
The problem of merging two sorted lists arises frequently. We have seen a procedure for it as the subroutine Merge in Section
2.3.1. In this problem, we will prove a lower bound of 2n − 1 on the worst-case number of comparisons required to merge two
sorted lists, each containing n items.

First we will show a lower bound of 2n− o(n) comparisons by using a decision tree,

a. Given 2n numbers, compute the number of possible ways to divide them into two sorted lists, each with n numbers.

b. Using a decision tree and your answer to part (a), show that any algorithm that correctly merges two sorted lists must
perform at least 2n− o(n) comparisons.

Now we will show a slightly tigher 2n− 1 bound.

c. Show that if two elements are consecutive in the sorted order and from different lists, then they must be compared.

d. Use your answer to the previous part to show a lower bound of 2n− 1 comparisons for merging two sorted lists.

(a) Note that every list of elements only have one permutation that is in sorted order. Thus, this problem can be seen
as counting the number of ways to pick n numbers out of 2n numbers to form the first list, and using the remaining
numbers to form the second list. We can count that with the binomial notation(

2n

n

)
=

22n

√
πn

(
1 +O

(
1

n

))
,

in which the approximation is proved in (C.1-13).

(b) The input of the merge algorithm are the two sorted lists and we know from item (a) that the number of possible ways
to form these lists elements is

(
2n
n

)
. Note that these pairs of sorted lists are unique and each of them can be the final

merged list if placed side by side. Thus, the number of permutations of the input to form the final merged list is also(
2n
n

)
. We can compute a lower bound on the number of comparisons to solve this problem by determining the height

of the decision tree with at least
(
2n
n

)
leaves. Let h be the height of such a decision tree. Thus, we have

2h ≥ 2n

n

=
22n

√
πn

(
1 +O

(
1

n

))
,

which implies

h ≥ lg

(
22n

√
πn

(
1 +O

(
1

n

)))
= lg(22n)− lg(

√
πn) + lg

(
1 +O

(
1

n

))
= 2n− o(n).

(c) Let A and B denote the two input sorted lists and assume without loss of generality that their elements are distinct.
Let a ∈ A and b ∈ B denote two elements that are consecutive in the sorted order. Note that since they are consecutive,
the number of elements that are before/after a in the sorted list is equal to the number of elements before/after b in
the sorted list. This implies that if we compare a to every element of B except b and compare b to every element of A
except a, we will find the two possible positions for them in the sorted list, but we will not be able to determine which
one comes first.

(d) In the worst case, every pair of elements in the final list comes from different input lists. There are 2n elements in
the final list and 2n − 1 pairs of consecutive elements. Thus, 2n − 1 is a lower bound on the worst-case number of
comparisons to merge two sorted lists.

111

CLRS – Chapter 8 – Sorting in Linear Time Daniel Bastos Moraes

8-7 The 0-1 sorting lemma and columnsort
Very long statement. Read it on the text book.

Skipped.

112

CLRS – Chapter 9 – Medians and Order Statistics Daniel Bastos Moraes

Medians and Order Statistics

9.1 Minimum and maximum

9.1-1 Show that the second smallest of n elements can be found with n + dlgne − 2 comparisons in the worst case. (Hint: Also find
the smallest element.)

Lets find first the smallest element. Compare the elements in pairs and discard the largest element of each pair. The number
of elements is now dn/2e. Repeat this operation recursively to the remaining elements until the smallest element is found.
Since we discard one element in each comparison, the number of comparisons is the number of elements that is not the
smaller. Thus, n − 1 comparisons. Note that the second smallest element can only be greater than the smallest element.
Thus, the second smallest element is among these dlgne elements that were discarded when compared to the smallest element.
Use the same recursive approach on these dlgne elements to find the second smallest with dlgne− 1 comparisons. The total
number of comparisons in the worst-case is then n− 1 + dlgne − 1 = n+ dlgne − 2.

9.1-2 (?) Prove the lower bound of d3n/2e − 2 comparisons in the worst case to find both the maximum and minimum of n numbers.
(Hint: Consider how many numbers are potentially either the maximum or minimum, and investigate how a comparison affects
these counts.)

At the start, any of the n the elements can be both the minimum and the maximum. After the first comparison, we can
discard the largest as not being the minimum and the smallest as not being the maximum. From now on we have two options:
compare two different elements or compare one of the elements previously compared with a different element. The first option
will decrease by one both the number of potential minimums and potential maximums, while the second option will only
decrease one of these totals. Thus, the best way to start is to group the elements in pairs and compare them, which requires
bn/2c comparisons. After comparing all the pairs, we will have dn/2e potential maximums and dn/2e potential minimums.
In the worst-case, those sets are disjoint and must be treated independently. We know from the previous question that the
minimum number of comparisons needed to find the minimum or the maximum among dn/2e elements is dn/2e − 1. Thus,
the lower bound to find both the maximum and the minimum of n numbers in the worst-case is⌊n

2

⌋
+ 2

(⌈n
2

⌉
− 1
)
.

If n is even, we have ⌊n
2

⌋
+ 2

(⌈n
2

⌉
− 1
)

=
n

2
+ n− 2 =

3n

2
− 2 =

⌈3n

2

⌉
− 2.

If n is odd, we have ⌊n
2

⌋
+ 2

(⌈n
2

⌉
− 1
)

=
n− 1

2
+ (n+ 1)− 2 =

3n− 3

2
=
⌈3n

2

⌉
− 2.

113

CLRS – Chapter 9 – Medians and Order Statistics Daniel Bastos Moraes

9.2 Selection in worst-case linear time

9.2-1 Show that Randomized-Select never makes a recursive call to a 0-length array.

At the start of each recursive call, a random pivot is chosen. If it happens to be the ith element, the element being searched
has been found and is returned without any additional recursion call. Otherwise, the ith element is either before or after
the pivot and a recursive call is made on the side of the subarray that includes the ith element.

9.2-2 Argue that the indicator random vartiable Xk and the value T (max(k − 1, n− k)) are independent.

BothXk and T (max(k−1, n−k)) depends on the value of k. However, no matter ifXk is 0 or 1, the value of T (max(k−1, n−k))
is the same.

9.2-3 Write an iterative version of Randomized-Select.

The pseudocode is stated below.

Randomized-Select-Iterative(A, p, r, i)
1 if p == r then
2 return A[p]
3 while True do
4 q = Randomized-Partition(A, p, r)
5 k = q − p+ 1
6 if i == k then
7 return A[q]
8 else if i < k then
9 r = q − 1

10 else
11 p = q + 1
12 i = i− k

9.2-4 Suppose we use Randomized-Select to select the minimum element of the array A = 〈3, 2, 9, 0, 7, 5, 4, 8, 6, 1〉. Describe a
sequence of partitions that results in a worst-case performance of Randomized-Select.

The worst-case occurs when the pivot is always the greatest element. The number of calls to partition in this case is n− 1.

114

CLRS – Chapter 9 – Medians and Order Statistics Daniel Bastos Moraes

9.3 Selection in worst-case linear time

9.3-1 In the algorithm Select, the input elements are divided into groups of 5. Will the algorithm work in linear time if they are
divided into groups of 7? Argue that Select does not run in linear time if groups of 3 are used.

If the elements are divided into groups of 7, the number of elements greater/smaller than the median-of-medians is at least

7

(⌈1

2

⌈n
7

⌉⌉
− 2

)
≥ 4n

14
− 8 =

2n

7
− 8,

which implies that, in the worst-case, step 5 calls Select recursively on at most

n−
(

2n

7
− 8

)
=

5n

7
+ 8

elements. We then have the recurrence

T (n) = T
(⌈n

7

⌉)
+ T

(
5n

7
+ 8

)
+O(n).

We shall prove that its running time is linear by substitution. More specifically, we will show that

T (n) ≤ cn ∀n ≥ n0,

where c and n0 are positive constants. Substituting into the recurrence, yields

T (n) ≤ c
⌈n

7

⌉
+ c

(
5n

7
+ 8

)
+ an

≤ cn
7

+ c+ c
5n

7
+ 8c+ an (c ≥ 1)

=
6

7
cn+ 9c+ an

= cn+

(
−1

7
cn+ 9c+ an

)
≤ cn,

where the last step holds for

−1

7
cn+ 9c+ an ≤ 0→ c ≥ 7a

(
n

n− 63

)
,

and picking n0 = 126, it holds for c ≥ 14a.

Similarly, with groups of 3, the number of elements greater/smaller than the median-of-medians is at least

2

(⌈1

2

⌈n
3

⌉⌉
− 2

)
≥ n

3
− 4.

which implies that, in the worst-case, step 5 calls Select recursively on at most

n−
(n

3
− 4
)

=
2n

3
+ 4

elements. We then have the recurrence

T (n) = T
(⌈n

3

⌉)
+ T

(
2n

3
+ 4

)
+O(n).

We shall prove that its running time is ω(n) by substitution. More specifically, we will show that

T (n) > cn+ d ∀n ≥ n0,

where c, d, and n0 are positive constants. Substituting into the recurrence, yields

T (n) > c
⌈n

3

⌉
+ d+ c

(
2n

3
+ 4

)
+ d+ an

> c
n

3
+ c+ d+ c

2n

3
+ 4c+ d+ an (c ≥ 1)

= cn+ 5c+ 2d+ an

> cn,

where the last step holds for 5c+ 2d+ an > 0.

115

CLRS – Chapter 9 – Medians and Order Statistics Daniel Bastos Moraes

9.3-2 Analyze Select to show that if n ≥ 140, then at least dn/4e elements are greater than the median-of-medians x and at least
dn/4e elements are less than x.

We have that at least
3n

10
− 6

elements are greater/smaller than x. To this number be equal to or greater than dn/4e, we find n such that

3n

10
− 6 ≥

⌈n
4

⌉
→ 3n

10
− 6 ≥ n

4
+ 1

→ 6n− 5n

20
≥ 7

→ n

20
≥ 7

→ n ≥ 140.

9.3-3 Show how quicksort can be made to run in O(n lgn) time in the worst-case, assuming that all elements are distinct.

Update the partition procedure to use the median as the pivot. It will take an additional O(n)-time to find the median with
the Select procedure, but the running time of partition will still be linear. We will then have the recurrence

T (n) = 2T
(n

2

)
+O(n),

which takes
lgn∑
i=0

2i · n
2i

=

lgn∑
i=0

n = O(n lgn).

9.3-4 (?) Suppose that an algorithm uses only comparisons to find the ith smallest element in a set of n elements. Show that it can
also find the i− 1 smaller elements and the n− i larger elements without performing any additional comparisons.

Assume without loss of generality that the elements of the array are distinct. Let x denote the ith order statistic that was
found through comparisons. First note that if there exists an element y that was never compared to any other element, its
value was not taken into account to determine x, which implies that there are at least two possible order statistics for x –
one for y < x and another for y > x. The same occurs if y is only compared to elements that are not between x and y
in the sorted order. Note that these comparisons are insufficient to determine if y is smaller or greater than x, and there
will also be at least two possible order statistics for x. Therefore, to find x, the algorithm must compare y to x directly
or by transitivity. These comparisons are sufficient to determine the relative order of every element with respect to x, and
therefore to also determine the i− 1 smaller and the n− i greater elements of the array.

116

CLRS – Chapter 9 – Medians and Order Statistics Daniel Bastos Moraes

9.3-5 Suppose that you have a “black-box” worst-case linear-time median subroutine. Give a simple, linear-time algorithm that solves
the selection problem for an arbitrary order statistic.

A simple algorithm works as follows:

(a) Find the lower median m using the “black-box” median subroutine.

(b) If i = dn/2e, just return m. Otherwise, partition the array using m as the pivot and recursively find the ith element
on the first dn/2e − 1 elements if i < dn/2e, or the (i− dn/2e)th element on the last bn/2c elements if i > dn/2e.

This algorithm has the recurrence
T (n) = T (n/2) +O(n),

which can be solved using case 3 of the master method, since nlg 1 is polynomially smaller than f(n). Thus, T (n) = Θ(n).

The pseudocode of this algorithm is stated below.

Select’(A, p, r, i)
1 m = Median(A, p, r)
2 k = dn/2e
3 if i == k then
4 return m
5 else
6 q = Partition(A, p, r,m)
7 if i < k then
8 // recurve over the first dn/2e − 1 elements
9 Select’(A, p, p+ k − 2, i)

10 else
11 // recurve over the last bn/2c elements
12 Select’(A, p+ k, r, i− k)

117

CLRS – Chapter 9 – Medians and Order Statistics Daniel Bastos Moraes

9.3-6 The kth quantiles of an n-element set are the k − 1 order statistics that divide the sorted set into k equal-sized sets (to within
1). Give an O(n lg k)-time algorithm to list the kth quantiles of a set.

Let S be an n-set and S(i) denote the ith order statistic of S. The kth quantiles of S are the elements

S(1(n/k)), S(2(n/k)), . . . , S((k−1)(n/k)).

An efficient algorithm to find the above elements work as follows:

(a) If k = 1, then return ∅.
(b) Otherwise, do the following:

i. Partition S around the element S(bk/2c(n/k)). Let q denote the position of the pivot after partition and let S1 and
S2 denote the subsets S[1, . . . , q] and S[q + 1, . . . , n], respectively.

ii. Recursively solve the (bk/2c)th quantiles of S1 and the (dk/2e) quantiles of S2. Let Q1 and Q2 denote the solutions
of S1 and S2, respectively.

iii. Return Q1 ∪ {S[q]} ∪Q2.

We shall now prove that this algorithm runs in O(n lg k). First note that since

n mod k = 0,

k is even implies that n is also even. Thus, for even k, we have⌊k
2

⌋
· n
k

=
k

2
· n
k

=
n

2

=
⌊n

2

⌋
,

which implies that q is the lower median. When k is odd, we have⌊k
2

⌋
· n
k

=
k − 1

2
· n
k

=

(
k

2
− 1

2

)
n

k

=
n

2
− n

2k
.

Step (a) takes O(1). Step (b) has the recurrence

T (n, k) =

O(1), k = 1

T
(⌊

n
2

⌋
,
⌊
k
2

⌋)
+ T

(⌈
n
2

⌉
,
⌈
k
2

⌉)
+O(n), k > 1 and k is even

T
(
n
2
− n

2k
,
⌊
k
2

⌋)
+ T

(
n
2

+ n
2k
,
⌈
k
2

⌉)
+O(n), k > 1 and k is odd

We shall solve this recurrence through the analysis of its recursion-tree. Since the problem is always divided into two
subproblems, without overlap, the total cost over all nodes at depth i is cn. The bottom level at depth lg k has 2lg k = k
nodes, each contributing cost O(1), for a total cost of O(k). Thus, the cost of the entire tree is

T (n, k) =

lg k−1∑
i=0

cn+O(k)

= cn lg k +O(k)

= O(n lg k).

118

CLRS – Chapter 9 – Medians and Order Statistics Daniel Bastos Moraes

9.3-7 Describe an O(n)-time algorithm that, given a set S of n distinct numbers and a positive integer k ≤ n, determines the k numbers
in S that are closest to the median of S.

Let A be an array of size n. The following algorithm finds k elements of A such that every element

• is greater than or equal to the (bn/2c − b(k − 1)/2c)th order statistic of A, and

• is lower than or equal to the (bn/2c+ d(k − 1)/2e)th order statistic of A.

Do the following steps:

(a) Find the qth order statistic of A, such that q = bn/2c − b(k − 1)/2c, and partition A around this element.

(b) If k = 1, return A[q].

(c) Otherwise, do the following:

i. Let A′ denote subarray A[q, . . . , n].

ii. Find the kth order statistic of A′ and partition A′ around this element.

iii. Return the subarray A′[q, . . . , q + k − 1].

The algorithm do at most two selections and two partitions. Thus, its running time is 4 ·O(n) +O(1) = O(n).

9.3-8 Let X[1 . . . n] and Y [1 . . . n] be two arrays, each containing n numbers already in sorted order. Give an O(lgn)-time algorithm
to find the median of all 2n elements in arrays X and Y .

Note that, since both arrays are sorted, the order statistic of X[i] is b(n+ 1)/2c (the median) if, and only if,

X[i] ≥ Y
[⌊n+ 1

2

⌋
− i
]
,

and

X[i] ≤ Y
[⌊n+ 1

2

⌋
− i+ 1

]
.

Start testing the median of X. If the first comparison fails, recurse over the right half. If the second comparison fails, recurse
over the left half. Otherwise, return X[i]. If a recursion is performed on an empty array, the median is not within X. Repeat
a similar procedure on Y to find the median. The complexity of this algorithm is O(lgn) +O(lgn) = O(lgn).

9.3-9 Professor Olay is consulting for an oil company, which is planning a large pipeline running east to west through an oil field of n
wells. The company wants to connect a spur pipeline from each well directly to the main pipeline along a shortest route (either
north or south), as shown in Figure 9.2. Given the x- and y-coordinates of the wells, how should the professor pick the optimal
location of the main pipeline, which would be the one that minimizes the total length of the spurs? Show how to determine the
optimal location in linear time.

The optimal locations are the lower and upper medians of the y values. Find one of them with the Select algorithm.

119

CLRS – Chapter 9 – Medians and Order Statistics Daniel Bastos Moraes

Problems

9-1 Largest i numbers in sorted order
Given a set of n numbers, we wish to find the i largest in sorted order using a comparison-based algorithm. Find the algorithm
that implements each of the following methods with the best asymptotic worst-case running time, and analyze the running times
of the algorithms in terms of n and i.

a. Sort the numbers, and list the i largest.

b. Build a max-priority queue from the numbers, and call Extract-Max i times.

c. Use an order-statistic algorithm to find the ith largest number, partition around that number, and sort the i largest numbers.

(a) The pseudocode is stated below.

LargestNumbersSort(A, i)
1 Let B be an integer array of size i
2 Heapsort(A, 1, A.length)
3 for j = 1 to i do
4 B[j] = A[j]
5 return B

This algorithm runs in Θ(n lgn+ i) = Θ(n lgn).

(b) The pseudocode is stated below.

LargestNumbersPriorityQueue(A, i)
1 Let B be an integer array of size i
2 Build-Max-Heap(A)
3 for j = 1 to i do
4 element = Heap-Extract-Max(A)
5 B[i− j + 1] = element

6 return B

Build-Max-Heap call takes O(n), Extract-Max call takes O(lgn). This algorithm runs in O(n+ i lgn).

(c) The pseudocode is stated below.

LargestNumbersOrderStatistic(A, i)
1 Let B be an integer array of size i
2 q = Select(A, i)
3 Partition(A, 1, A.length, q)
4 Heapsort(A, 1, i)
5 for j = 1 to i do
6 B[j] = A[j]
7 return B

Select call takes O(n), Partition call takes O(n), Quicksort call takes O(i lg i). This algorithm runs in O(n+ i lg i).

120

CLRS – Chapter 9 – Medians and Order Statistics Daniel Bastos Moraes

9-2 Weighted median
For n distinct elements x1, x2, . . . , xn with positive weights w1, w2, . . . , wn such that

∑n
i=1 wi = 1, the weighted (lower) median

is the element xk satisfying ∑
xi<xk

wi <
1

2
,

and ∑
xi>xk

wi ≤
1

2
.

For example, if the elements are 0.1, 0.35, 0.05, 0.1, 0.15, 0.05, 0.2 and each element equals its weight (that is, wi = x for
i = 1, 2, . . . , 7), the median is 0.1, but the weighted median is 0.2.

a. Argue that the median of x1, x2, . . . , xn is the weighted median of the xi with weights wi = 1/n for 1, 2, . . . , n.

b. Show how to compute the weighted median of n elements in O(n lgn) worst-case time using sorting.

c. Show how to compute the weighted median in Θ(n) worst-case time using a linear-time median algorithm such as Select
from Section 9.3.

The post-office location problem is defined as follows. We are given n points p1, p2, . . . , pn with associated weights w1, w2, . . . , wn.
We wish to find a point p (not necessarily one of the input points) that minimizes the sum

∑n
i=1 wid(p, pi), where d(a, b) is the

distance between points a and b.

d. Argue that the weighted median is a best solution for the 1-dimensional post-office location problem, in which points are
simply real numbers and the distance between points a and b is d(a, b) = |a− b|.

e. Find the best solution for the 2-dimensional post-office location problem, in which the points are (x, y) coordinate pairs and
the distance between points a = (x1, y1) and b = (x2, y2) is the Manhattan distance given by d(a, b) = |x1−x2|+ |y1−y2|.

(a) Note that there are at most b(n− 1)/2c elements that are smaller than the median and at most d(n− 1)/2e elements
that are greater than the median. Since the weight of each element is 1/n, we have∑

xi<xk

wi =
∑
xi<xk

1

n
=

1

n

∑
xi<xk

1 ≤ 1

n
·
⌊n− 1

2

⌋
<

1

n
· n

2
=

1

2
,

and ∑
xi<xk

wi =
∑
xi<xk

1

n
=

1

n

∑
xi<xk

1 ≤ 1

n
·
⌈n− 1

2

⌉
≤ 1

n
· n

2
=

1

2
,

which implies that the median is also the weighted median.

(b) Sort the array with Heapsort. Iterate over the elements of the array, accumulating the sum of their weights until the
sum achieves a value that is greater than or equal to 1/2. Let xk denote the last element that made the sum accumulate
a value greater than or equal to 1/2. Note that at that point∑

xi<xk

wi <
1

2

holds since the sum of the weights until the element right before xk is smaller than 1/2 and∑
xi>xk

wi ≤
1

2

holds since the sum of the weights until xk is greater than or equal to 1/2 and
∑n
i=1 wi = 1. Thus, xk is the weighted

median. This algorithm takes Θ(n lgn) to sort the array with Heapsort and O(n) to accumulate the weights and find
the weighted median.

(c) Do the following steps:

i. Find the median with the Select algorithm.

ii. Partition the array around the median.

iii. Let xm denote the position of the median after partitioning. Let WL =
∑
Xi<Xm

wi and WR =
∑
xi>xm

wi.

iv. If WL < 1/2 and WR ≤ 1/2, xm is the weighted median. Otherwise, do the following:

A. If WL ≥ 1/2, the weighted median is before xm. Set wm = wm +WR and recurse on the left half of the array,
including xm.

B. If WR > 1/2, the weighted median is after xm. Set wm = wm +WL and recurse on the right half of the array,
including xm.

121

CLRS – Chapter 9 – Medians and Order Statistics Daniel Bastos Moraes

This algorithm has the recurrence:

T (n) = T
(n
n

+ 1
)

+ Θ(n) =

lgn∑
i=0

(n
2i

+ 1
)

= n

lgn∑
i=0

1

2i
+

lgn∑
i=0

1 ≤ 2n+ lgn+ 1 = Θ(n).

(d) Skipped.

(e) Skipped.

122

CLRS – Chapter 9 – Medians and Order Statistics Daniel Bastos Moraes

9-3 Small order statistics
We showed that the worst-case number T (n) of comparisons used by Select to select the ith order statistic from n numbers
satisfies T (n) = Θ(n), but the constant hidden by the Θ-notation is rather large. When i is small relative to n, we can implement
a different procedure that uses Select as a subroutine but makes fewer comparisons in the worst case.

a. Describe an algorithm that uses Ui(n) comparisons to find the ith smallest of n elements, where

Ui(n) =

{
T (n) if i ≥ n/2,
bn/2c+ Ui(dn/2e) + T (2i) otherwise.

(Hint: Begin with bn/2c disjoint pairwise comparisons, and recurse on the set containing the smaller element from each
pair.)

b. Show that, if i < n/2, then Ui(n) = n+O(T (2i) lg(n/i)).

c. Show that if i is a constant less than n/2, then Ui(n) = n+O(lgn).

d. Show that if i = n/k for k ≥ 2, then Ui(n) = n+O(T (2n/k) lg k).

(a) First, note that the Select algorithm find the ith element by partitioning the array. That is, when the ith element
is found, the first i elements are the i smallest. However, when n is too large with respect to i, it perform more
comparisons than necessary. Taking the hint that the question gave us, we can reduce the number of comparisons when
n is too large by running Select only when n is smaller than or equal to 2i.

The key insight to solve the question is to observe that if we first make disjoint pairwise comparisons and then run
Select only among the smallest element of each pair, the ith order statistic of the whole array is among the i smallest
elements that were found by Select and their large counterparts on the right half of the array. This occurs because
the remaining elements on the left half are larger than at least i elements and their larger counterparts on the right
half are even larger.

We can then use this notion to build a recursive algorithm that solves the selection problem with fewer comparisons,
using the Select algorithm only when n is small enough:

i. If i ≥ n/2, run Select and return its result.

ii. Otherwise, do the following:

A. Perform disjoint pairwise comparisons and rearrange the array such that the smaller element of each pair
appears on the left half of the array, in the same order of its larger counterparts.

B. Recursively find the ith element among the elements on the left half of the array.

C. The ith order statistic is among the first i elements of the array and their larger counterparts. Run Select
on these 2i elements and return the result.

(b) Can be proved by substitution.

(c) From the previous item, we have
Ui(n) = n+O(T (2i) lg(n/i)),

which implies that, when i is a constant less than n/2, we have

Ui(n) = n+O(T (2i) lg(n/i))

= n+O(O(1)O(lgn))

= n+O(lgn).

(d) If k > 2, then i < n/2 and we can use the result of item (b):

Ui(n) = n+O(T (2i) lg(n/i))

= n = O(T (2n/k) lg(n/(n/k)))

= n = O(T (2n/k) lg(k)).

If k = 2, then i = n/2 and lg k = 1. Thus, we have

Ui(n) = T (n)

≤ n+ T (n) + lg k

= n+O(T (n) + lg k)

= n+O(T (2n/k) + lg k).

123

CLRS – Chapter 9 – Medians and Order Statistics Daniel Bastos Moraes

9-4 Alternative analysis of randomized selection
In this problem, we use indicator random variables to analyze the Randomized-Select procedure in a manner akin to our
analysis of Randomized-Quicksort in Section 7.4.2.

As in the quicksort analysis, we assume that all elements are distinct, and we rename the elements of the input array A as
z1, z2, . . . , zn, where zi is the ith smallest element. Thus, the call Randomized-Select(A, 1, n, k) returns zk.

For 1 ≤ i < j ≤ n, let Xijk = I{zi is compared with zj sometime during the execution of the algorithm to find zk}.

a. Give an exact expression for E[Xijk]. (Hint: Your expression may have different values, depending on the values of i, j, and
k.)

b. Let Xk denote the total number of comparisons between elements of array A when finding zk. Show that

E[Xk] ≤ 2

 k∑
i=1

n∑
j=k

1

j − i+ 1
+

n∑
j=k+1

j − k − 1

j − k + 1
+

k−2∑
i=1

k − i− 1

k − i+ 1

 .

c. Show that E[Xk] ≤ 4n.

d. Conclude that, assuming all elements of array A are distinct, Randomized-Select runs in expected time O(n).

Skipped.

124

CLRS – Chapter 10 – Elementary Data Structures Daniel Bastos Moraes

Elementary Data Structures

10.1 Stacks and queues

10.1-1 Using Figure 10.1 as a model, illustrate the result of each operation in the sequence Push(S, 4), Push(S, 1), Push(S, 3), Pop(S),
Push(S, 8), and Pop(S) on an initially empty stack S stored in an array S[1 . . . 6].

Answer.

10.1-2 Explain how to implement two stacks in one array A[1 . . . n] in such a way that neither stack overflows unless the total number
of elements in both stacks together is n. The Push and Pop operations should run in O(1) time.

Answer.

10.1-3 Using Figure 10.2 as a model, illustrate the result of each operation in the sequence Enqueue(Q, 4), Enqueue(Q, 1), Enqueue(Q,
3), Dequeue(Q), Enqueue(Q, 8), and Dequeue(Q) on an initially empty queue Q stored in an array Q[1 . . . 6].

Answer.

10.1-4 Rewrite Enqueue and Dequeue to detect underflow and overflow of a queue.

Answer.

10.1-5 Whereas a stack allows insertion and deletion of elements at only one end, and a queue allows insertion at one end and deletion
at the other end, a deque (double-ended queue) allows insertion and deletion at both ends. Write four O(1)-time procedures to
insert elements into and delete elements from both ends of a deque implemented by an array.

Answer.

10.1-6 Show how to implement a queue using two stacks. Analyze the running time of the queue operations.

Answer.

10.1-7 Show how to implement a stack using two queues. Analyze the running time of the stack operations.

Answer.

125

CLRS – Chapter A – Summations Daniel Bastos Moraes

Summations

A.1 Summation formulas and properties

A.1-1 Find a simple formula for
∑n
k=1(2k − 1).

n∑
k=1

(2k − 1) =

n∑
k=1

2k −
n∑
k=1

1

= 2

n∑
k=1

k − n

= 2 · 1

2
n(n+ 2)− n

= n2 + n− n

= n2.

A.1-2 (?) Show that
∑n
k=1 1/(2k − 1) = ln(

√
n) +O(1) by manipulating the harmonic series.

n∑
k=1

1/(2k − 1) =
1

1
+

1

3
+

1

5
+ · · ·+ 1

2n− 3
+

1

2n− 1

=

(
1

1
+

1

2
+

1

3
+ · · ·+ 1

2n

)
− 1

2

(
1 +

1

2
+

1

3
+ · · ·+ 1

n

)
=

2n∑
k=1

1

k
− 1

2

n∑
k−1

1

k

= ln 2n+O(1)− 1

2
(lnn+O(1))

= lnn+ ln 2 +O(1)− 1

2
lnn− 1

2
O(1)

=
1

2
lnn+O(1)

= ln(
√
n) +O(1).

A.1-3 Show that
∑∞
k=0 k

2xk = x(1 + x)/(1− x)3 for 0 < |x| < 1.

From Equation A.8, we have
∞∑
k=0

kxk =
x

(1− x)2
.

differentiating both sides and multiplying by x, we have

∞∑
k=0

k2xk = x · 1 · (1− x)2 − (2 · (1− x) · (−1) · x)

(1− x)4

= x · (1− x)(1− x) + (1− x) · 2x
(1− x)4

= x · (1− x) + 2x

(1− x)3

=
x(1 + x)

(1− x)3
.

126

CLRS – Chapter A – Summations Daniel Bastos Moraes

A.1-4 (?) Show that
∑∞
k=0(k − 1)/2k = 0.

∞∑
k=0

(k − 1)/2k =

∞∑
k=0

(
k

2k
− 1

2k

)

=

∞∑
k=0

k
1

2k
−
∞∑
k=0

1

2k

=

∞∑
k=0

k

(
1

2

)k
−
∞∑
k=0

(
1

2

)k
=

(1/2)

(1− (1/2))2
− 1

1− (1/2)

=
(1/2)

1− 1− (1/4)
− 2

= 4/2− 2

= 0.

A.1-5 (?) Evaluate the sum
∑∞
k=1(2k + 1)x2k for |x| < 1.

∞∑
k=1

(2k + 1)x2k =
d

dx
·
∞∑
k=1

x2k+1

=
d

dx
· x ·

∞∑
k=1

x2k

=
d

dx
· x ·

∞∑
k=0

(x2)k − x

=
d

dx
· x · 1

1− x2 − x

=
d

dx
· x− x(1− x2)

1− x2

=
d

dx
· x3

1− x2

=
3x2(1− x2)− (−2x)x3

(1− x2)2

=
3x2 − 3x4 + 2x4

(1− x2)2

=
(3− x2) · x2

(1− x2)2
.

A.1-6 Prove that
∑n
k=1O(fk(i)) = O(

∑n
k=1 fk(i)) by using the linearity property of summations.

Skipped.

127

CLRS – Chapter A – Summations Daniel Bastos Moraes

A.1-7 Evaluate the product
∏n
k=1 2 · 4k.

We have
n∏
k=1

(2 · 4k) = 2lg (
∏n
k=1(2·4

k)),

and

lg

(
n∏
k=1

(2 · 4k)

)
=

n∑
k=1

lg(2 · 22k)

=

n∑
k=1

lg 22k+1

=

n∑
k=1

(2k + 1)

= 2

n∑
k=1

k +

n∑
k=1

1

= n(n+ 1) + n

= n(n+ 2).

Thus,
n∏
k=1

(2 · 4k) = 2n(n+2).

A.1-8 (?) Evalute the product
∏n
k=2(1− 1/k2).

We have
n∏
k=2

(
1− 1

k2

)
= 2lg (

∑n
k=2 lg (1−1/k2)),

and
n∑
k=2

lg

(
1− 1

k2

)
=

n∑
k=2

lg

(
k2 − 1

k2

)

=

n∑
k=2

lg

(
(k − 1)

k
· (k + 1)

k

)

=

n∑
k=2

(
lg

(
k − 1

k

)
+ lg

(
k + 1

k

))
= lg

1

2
+ lg

3

2
+ lg

2

3
+ lg

4

3
+ lg

3

4
+ lg

5

4
+ · · ·+ lg

n− 2

n− 1
+ lg

n

n− 1
+ lg

n− 1

n
+ lg

n+ 1

n

= lg 1− lg 2 +��lg 3−��lg 2 +��lg 2−��lg 3 +��lg 4−��lg 3 +��lg 3−��lg 4 +��lg 5−��lg 4 + . . .

+����
lg(n− 2)−����

lg(n− 1) +��lgn−����
lg(n− 1) +����

lg(n− 1)−��lgn+ lg(n+ 1)− lgn

= 0− 1 + lg(n+ 1)− lgn

= lg(n+ 1)− lg(n)− 1.

Thus,
n∏
k=2

(
1− 1

k2

)
= 2(lg(n+1)−(lg(n)+1)) =

2lg (n+1)

2lg (n)+1
=

n+ 1

2lgn · 2 =
n+ 1

2n
.

128

CLRS – Chapter A – Summations Daniel Bastos Moraes

A.2 Bounding summations

A.2-1 Show that
∑n
k=1 1/k2 is bounded above by a constant.

n∑
k=1

= 1 +

n∑
k=2

1

k2

≤ 1 +

∫ n

1

dx

x2

= 1 +

(
− 1

x

∣∣∣∣n
1

)
= 1 +

(
− 1

n
−
(
−1

1

))
= 2− 1

n

≤ 2.

A.2-2 Find an asymptotic upper bound on the summation
blgnc∑
k=0

dn/2ke.

blgnc∑
k=0

⌈ n
2k

⌉
= n ·

blgnc∑
k=0

⌈ 1

2k

⌉

≤ n ·
lgn∑
k=0

(
1

2k
+ 1

)

= n ·
lgn∑
k=0

(
1

2k

)
+

lgn∑
k=0

1

= n · 1

1− (1/2)
+ lgn+ 1

= 2n+ lgn+ 1

= O(n).

A.2-3 Show that the nth harmonic number is Ω(lgn) by splitting the summation.

n∑
k=1

1

k
≥
blgnc−1∑
i=0

2i−1∑
j=0

1

2i + j

≥
blgnc−1∑
i=0

2i−1∑
j=0

1

2i+1

=

blgnc−1∑
i=0

1

2
·
2i−1∑
j=0

1

2i

=

blgnc−1∑
i=0

1

2

≥
lgn−2∑
i=0

1

2

=
1

2
(lg(n)− 1)

= Ω(lgn).

129

CLRS – Chapter A – Summations Daniel Bastos Moraes

A.2-4 Approximate
∑n
k=1 k

3 with an integral.

We have ∫ n

0

x3dx ≤
n∑
k=1

k3 ≤
∫ n+1

1

x3dx.

For a lower bound, we obtain
n∑
k=1

k3 ≥
∫ n

0

x3dx =
x4

4

∣∣∣∣n
0

=
n4

4
= Ω(n4).

For the upper bound, we obtain

n∑
k=1

k3 ≤
∫ n+1

1

x3dx =
x4

4

∣∣∣∣n+1

1

=
(n+ 1)4 − 1

4
= O(n4).

Thus,
n∑
k=1

k3 = Θ(n4).

A.2-5 Why didn’t we use the integral approximation (A.12) directly on
∑n
k=1 1/k to obtain an upper bound on the nth harmonic

number?

Applying (A.12) directly, we obtain
n∑
k=1

1

k
≤
∫ n

0

1

x
dx,

but the function 1/x is undefined for x = 0 (because of the division by zero).

130

CLRS – Chapter A – Summations Daniel Bastos Moraes

Problems

A-1 Bounding summations
Give asymptotically tight bounds on the following summations. Assume that r ≥ 0 and s ≥ 0 are constants.

a.
∑n
k=1 k

r.

b.
∑n
k=1 lgs k.

c.
∑n
k=1 k

r lgs k.

(a) For a lower bound, we have
n∑
k=1

kr ≥
∫ n

0

xrdx

=
x(r+1)

r + 1

∣∣∣∣n
0

=
n(r+1)

r + 1
− 0(r+1)

r + 1

≥ n(r+1)

= Ω(n(r+1)),

and for the upper bound, we have
n∑
k=1

kr ≤
n∑
k=1

nr = n(r+1) = O(n(r+1)).

Thus,
n∑
k=1

= Θ(n(r+1)).

(b) For a lower bound, we have
n∑
k=1

lgs k =

n/2∑
k=1

lgs k +

n∑
k=n/2+1

lgs k

≥
n/2∑
k=1

0 +

n∑
k=n/2+1

lgs
(n

2

)
=
n

2
lgs
(n

2

)
=
n

2
lgs n− n

2
lgs 2

≥ 1

2
n lgs n− 1

2
n

= Ω(n lgs n),

and for the upper bound, we have

n∑
k=1

lgs k ≤
n∑
k=1

lgs n = n lgs n = O(n lgs n).

Thus,
n∑
k=1

lgs k = Θ(n lgs n).

(c) It is easy to see that this summation is greater than the one from item (a). Thus, it is Ω(n(r+1)). Also, we have

n∑
k=1

kr lgs k ≤
n∑
k=1

nr lgs n = O(n(r+1) lgs n).

Thus, I guess it is Θ(n(r+1) lgs n).

131

CLRS – Chapter B – Sets, Etc. Daniel Bastos Moraes

Sets, Etc.

B.1 Sets

B.1-1 Draw Venn diagrams that illustrate the first of the distributive laws (B.1).

A

B

C

A ∩

∩
A

B

C

(B ∪ C) =

=
A

B

C

A ∩ (B ∪ C) =

=
A

B

C

(A ∩B) ∪

∪
A

B

C

(A ∩ C)

B.1-2 Prove the generalization of DeMorgan’s laws to any finite collection of sets:

A1 ∩A2 ∩ · · · ∩An = A1 ∪A2 ∪ · · · ∪An,

A1 ∪A2 ∪ · · · ∪An = A1 ∩A2 ∩ · · · ∩An.

The base case, which occurs when n = 2, is given (from the text book). Now, lets assume it holds for n and show that it
also holds for n+ 1.

For the first DeMongan’s law, we have

A1 ∩A2 ∩ · · · ∩An ∩An+1 = (A1 ∩A2 ∩ · · · ∩An) ∩An+1

= (A1 ∩A2 ∩ · · · ∩An) ∪An+1

= (A1 ∪A2 ∪ · · · ∪An) ∪An+1

= A1 ∪A2 ∪ · · · ∪An ∪An+1.

For the second DeMongan’s law, we have

A1 ∪A2 ∪ · · · ∪An ∪An+1 = (A1 ∪A2 ∪ · · · ∪An) ∪An+1

= (A1 ∪A2 ∪ · · · ∪An) ∩An+1

= (A1 ∩A2 ∩ · · · ∩An) ∩An+1

= A1 ∩A2 ∩ · · · ∩An ∩An+1.

B.1-3 (?) Prove the generalization of equation (B.3), which is called the principle of inclusion and exclusion :

|A1 ∪A2 ∪ · · · ∪An| =
|A1|+ |A2|+ · · ·+ |An|
− |A1 ∩A2| − |A1 ∩A3| − · · · (all pairs)

+ |A1 ∩A2 ∩A3|+ · · · (all triples)

...

+ (−1)n−1|A1 ∩A2 ∩ · · · ∩An|.

Skipped.

B.1-4 Show that the set of odd natural numbers is countable.

Let O denote the set of odd natural numbers.

The function f(n) = 2n+ 1 is a 1-1 correspondence from N to O. Thus, O is countable.

132

CLRS – Chapter B – Sets, Etc. Daniel Bastos Moraes

B.1-5 Show that for any finite set S, the power set 2S has 2|S| elements (that is, there are 2|S| distinct subsets of S).

For the base case, consider a set with a single element x. We have

2{x} = {∅, {x}},

which shows that the power set of a set with a single element has cardinality 21 = 2.

Let C(·) denote the cardinality of a power set. Let S be a set of size n. Lets assume that the power set of S has cardinality
C(S) = 2|S| = 2n. Now, let S′ be the set S with one additional element x, such that |S′| = n+ 1. The power set of S′ will
consist of all sets in the power set of S plus all those same sets again, with the element x added. Thus, we have

C(S′) = 2 · C(S) = 2 · 2n = 2n+1.

B.1-6 Give an inductive definition for an n-tuple by extending the set-theoretic definition for an ordered pair.

(a) = {a}
(a, b) = {a, {a, b}}

(a, b, c) = {a, {a, b}, {a, b, c}}
(a1, a2, . . . , an) = (a1, a2, . . . , an−1) ∪ {a1, a2, . . . , an}

133

CLRS – Chapter B – Sets, Etc. Daniel Bastos Moraes

B.2 Relations

B.2-1 Prove that the subset relation “⊆” on all subsets of Z is a partial order but not a total order.

Let S denote all the subsets of Z. Let A = {1}, B = {2} be two subsets of Z. We have A 6⊆ B and B 6⊆ A. Thus, the subset
relation “⊆” on S× S is not a total relation and therefore is not a total order.

For the relation ⊆ on S be a partial order, the following properties needs to hold: (1) reflexivity, (2) antisymmetry, (3)
transitivity. Since A ⊆ A, for all A ∈ S, the relation “⊆” on S× S is reflexive. To be antisymmetric, we need to show that
if A ⊆ B and B ⊆ A, then A = B, for all A,B ∈ S. Since A ⊆ B, for all a ∈ A we have a ∈ B and since B ⊆ A, for all
b ∈ B we have b ∈ A. Thus, A = B and the relation “⊆” on S× S is antisymmetric. To be transitive, we need to show that
if A ⊆ B and B ⊆ C, then A ⊆ C, for all A,B,C ∈ S. So let a ∈ A. Since A ⊆ B, we have a ∈ B. Since a ∈ B and B ⊆ C,
we have a ∈ C. Thus, A ⊆ C and the relation “⊆” on S× S is transitive.

B.2-2 Show that for any positive integer n, the relation “equivalent modulo n” is an equivalence relation on the integers. (We say that
a ≡ b (mod n) if there exists an integer q such that a − b = qn.) Into what equivalence classes does this relation partition the
integers?

To the relation “equivalent modulo n” be an equivalent relation on Z× Z, the following needs to hold:

(a) a ≡ a (mod n), for all a, n ∈ Z (reflexivity)

(b) a ≡ b (mod n) implies b ≡ a (mod n), for all a, b, n ∈ Z (symmetry)

(c) a ≡ b (mod n) and b ≡ c (mod n) implies a ≡ c (mod n), for all a, b, c, n ∈ Z (transitivity)

For the reflexivity property, we have that a− a = qn holds directly for q = 0.

For the symmetry property, we have that a− b = pn implies b− a = qn holds directly for q = −p.
For the transitivity property, we have that a− b = pn and b− c = qn implies a− c = rn holds for r = p+ q, since

(a− b) + (b− c) = pn+ qn→ a− c = (p+ q)n.

B.2-3 Give examples of relations that are

a. reflexive and symmetric but not transitive,

b. reflexive and transitive but not symmetric,

c. symmetric and transitive but not reflexive.

(a) The relation “is neighbor of” is reflexive (one is neighbor of himself) and symmetric (a “is neighbor of” b imply b “is
neighbor of” a), but not transitive (a “is neighbor of” b and b “is neighbor of” c does not imply a “is neighbor of” c.

(b) The relation “≤” is reflexive (a ≤ a) and transitive (a ≤ b and b ≤ c imply a ≤ c), but not symmetric (a ≤ b does not
imply b ≤ a).

(c) Consider the relation “a+ b >∞” on Z×Z. This relation is empty. However, it is symmetric (a R b imply b R a) and
transitive (a R b and b R c imply a R c), but not reflexive since for no a ∈ Z is it the case that a R a.

B.2-4 Let S be a finite set, and let R be an equivalence relation on S × S. Show that if in addition R is antisymmetric, then the
equivalence classes of S with respect to R are singletons.

For every a, b ∈ S such that a R b, by symmetry b R a, and by antisymmetry a = a. Thus, [a] = {b ∈ S : a R b} = {a} for
all a ∈ S, which implies that the equivalence classes are singletons.

B.2-5 Professor Narcissus claims that if a relation R is symmetric and transitive, then it is also reflexive. He offers the following proof.
By symmetry, a R b implies b R a. Transitivity, therefore, implies a R a. Is the professor correct?

No. This is only true for relations that for every a there is b such that a R b, by symmetry b R a, and by transitivity a R a.
For instance, an empty relation (like the one from Question B.2-3, item (c)) are symmetric and transitive, but not reflexive.

134

CLRS – Chapter B – Sets, Etc. Daniel Bastos Moraes

B.3 Functions

B.3-1 Let A and B be finite sets, and let f : A→ B be a function. Show that

a. if f is injective, then |A| ≤ |B|;
b. if f is surjective, then |A| ≥ |B|.

(a) Since f is injective, we have that A = f(A). Also, we have{
|B| = |f(A)|, f is surjective,

|B| > |f(A)|, f is not surjective.

Thus, |B| ≥ |f(A)| = |A| → |A| ≤ |B|.
(b) Since f is surjective, we have |f(A)| = |B|. Also, we have{

|A| = |f(A)|, f is injective,

|A| > |f(A)|, f is not injective.

Thus, |A| ≥ |f(A)| = |B| → |A| ≥ |B|.

B.3-2 Is the function f(x) = x + 1 bijective when the domain and the codomain are N? Is it bijective when the domain and the
codomain are Z?

On the set of naturals, f is injective but not surjective, since there is no a ∈ N such that 0 = f(a), which makes f(N) 6= N.

On the set of integers, f is both injective and surjective, and therefore bijective.

B.3-3 Give a natural definition for the inverse of a binary relation such that if a relation is in fact a bijective function, its relational
inverse is its functional inverse.

Let R be a binary relation on the sets A and B, such that R ⊆ A×B. The general definition of the inverse of R is given by

R−1 = {(b, a) ∈ B ×A : (a, b) ∈ R}.

When R is a bijective function, we have: (1) for all b ∈ B, there is at most one a ∈ A such that a R b (injective) and (2)
for all b ∈ B there is at least one a ∈ A such that a R b (surjective). Therefore, when R is bijective, each element of A is
related to exactly one element of B and vice-versa, which implies

f(a) = b ⇐⇒ f ′(b) = a,

for all a ∈ A and for all b ∈ B.

B.3-4 (?) Give a bijection from Z to Z× Z.

Skipped.

135

CLRS – Chapter C – Counting and Probability Daniel Bastos Moraes

Counting and Probability

C.1 Counting

C.1-1 How many k-substrings does an n-string have? (Consider identical k-substrings at different positions to be different.) How many
substrings does an n-string have in total?

For every position i of the n-string, i = 1, . . . , n− k+ 1, there is one k-substring the starts at i and ends at i+ k− 1. Thus,
the number of k-substrings in a n-string is

n−k+1∑
i=1

1 = n− k + 1.

Thus, the number of substrings (of all sizes) in an n-string is

n∑
k=1

n− k + 1 = n2 + n−
n∑
k=1

k

= n2 + n− n(n+ 1)

2

= n(n+ 1)− n(n+ 1)

2

=
n(n+ 1)

2
.

C.1-2 An n-input, m-output boolean function is a function from {TRUE,FALSE}n to {TRUE,FALSE}m. How many n-input, 1-output
boolean functions are there? How many n-input, m-output boolean functions are there?

We can view the number of possible inputs of size n as the number of binary n-strings, which is 2n.

Now, consider a single-valued function from {TRUE,FALSE}n to {TRUE}. In this case, the number of possible functions is
the number of possible inputs, which is 2n. Since an 1-output boolean function has two possible output values, each of the
2n functions we referred in the case of a single-valued function now has two ways to pick the output value. We can view this
number as the number of binary 2n-strings, which is 22n . As for an n-output function, each of the 2n functions we referred
in the case of a single-valued function now has 2m ways to pick the output value. Thus, there are (2m)2

n

of those.

C.1-3 In how many ways can n professors sit around a circular conference table? Consider two seatings to be the same if one can be
rotated to form the other.

For two seatings to be different from each other, the ordering of professors in each seating needs to be different. This number
can be viewed as the number of permutations of a set n elements, which is n!. However, note that for each permutation
that starts with professor k, 1 ≤ k ≤ n, there are n− 1 other permutations that are just a rotation of it. For instance, the
seatings {2, 3, 1} and {3, 1, 2} are a rotation of {1, 2, 3}. Thus, the number of different seatings can be viewed as fixing the
seat of the first professor and computing the number of permutations of the remaining n− 1 professors, which is (n− 1)!.

C.1-4 In how many ways can we choose three distinct numbers from the set {1, 2, . . . , 99} so that their sum is even?

The set has 50 odd numbers and 49 even numbers. For the sum be even, we have to choose three even numbers or one
even and two odds. For the case with three even numbers, there are 49!/(3! · (49− 3)!) = 18424 ways of choosing 3 distincts
numbers among the 49 even numbers. As for the case with one even and two odds, there are 49 ways to choose one even
number and 50!/(2! · (50 − 2)!) = 1225 ways of choosing 2 distincts numbers among the 50 odd numbers. Thus, there are
18424 + 49 · 1225 = 78449 ways to get an even sum.

136

CLRS – Chapter C – Counting and Probability Daniel Bastos Moraes

C.1-5 Prove the identity (
n

k

)
=
n

k

(
n− 1

k − 1

)
for 0 < k ≤ n.

(
n

k

)
=

n!

k! · (n− k)!

=
n · (n− 1)!

k · (k − 1)! · (n− k)!

=
n

k

(n− 1)!

(k − 1)! · ((n− 1)− (k − 1))!

=
n

k

(
n− 1

k − 1

)
.

C.1-6 Prove the identity (
n

k

)
=

n

n− k

(
n− 1

k

)
for 0 ≤ k < n.

(
n

k

)
=

n!

k! · (n− k)!

=
n · (n− 1)!

k! · (n− k) · (n− k − 1)!

=
n

n− k
(n− 1)!

k! · ((n− 1)− k)!

=
n

n− k

(
n− 1

k

)
.

C.1-7 To choose k objects from n, you can make one of the objects distinguished and consider whether the distinguished object is
chosen. Use this approach to prove that (

n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

Let S = {s1, s2, . . . , sn−1} and s0 the distinguished element. To choose k from the n elements, we have to consider two cases:

(a) If s0 is selected, it will be necessary to choose the k − 1 remaining elements from S. There are
(
n−1
k−1

)
combinations.

(b) If s0 is not selected, it will be necessary to choose the k remaining elements from S. There are
(
n−1
k

)
combinations.

Adding the above together, we have(
n− 1

k − 1

)
+

(
n− 1

k

)
=

(n− 1)!

(k − 1)! · (n− k)!
+

(n− 1)!

k! · (n− k − 1)!

=
k · (n− 1)!

k! · (n− k)!
+

(n− k) · (n− 1)!

k! · (n− k)!

=
(k + n− k) · (n− 1)!

k! · (n− k)!

=
n!

k! · (n− k)!

=

(
n

k

)
.

137

CLRS – Chapter C – Counting and Probability Daniel Bastos Moraes

C.1-8 Using the result of Exercise C.1-7, make a table for n = 0, 1, . . . , 6 and 0 ≤ k ≤ n of the binomial coefficients
(
n
k

)
with

(
0
0

)
at the

top,
(
1
0

)
and

(
1
1

)
on the next line, and so forth. Such a table of binomial coefficients is called Pascal’s triangle.

The table with binomials (
0

0

)
(

1

0

) (
1

1

)
(

2

0

) (
2

1

) (
2

2

)
(

3

0

) (
3

1

) (
3

2

) (
3

3

)
(

4

0

) (
4

1

) (
4

2

) (
4

3

) (
4

4

)
(

5

0

) (
5

1

) (
5

2

) (
5

3

) (
5

4

) (
5

5

)
(

6

0

) (
6

1

) (
6

2

) (
6

3

) (
6

4

) (
6

5

) (
6

6

)

Using the above table and the result of C.1-7, we have the Pascal’s triangle

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

C.1-9 Prove that
n∑
i=1

i =

(
n+ 1

2

)
.

We have (
n+ 1

2

)
=

(n+ 1)!

2! · ((n+ 1)− 2)!

=
(n+ 1) · n · (n− 1)!

2 · (n− 1)!

=
n(n+ 1)

2

=

n∑
i=1

i,

which also shows that the third Pascal’s diagonal has the triangular numbers.

138

CLRS – Chapter C – Counting and Probability Daniel Bastos Moraes

C.1-10 Show that for any integers n ≥ 0 and 0 ≤ k ≤ n, the expression
(
n
k

)
achieves its maximum value when k = bn/2c or k = dn/2e.

It follows from the Pascal’s triangle

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

...

We can prove by induction. The base case, which occurs when n = 0, holds since(
n

bn/2c

)
=

(
n

dn/2e

)
=

(
0

0

)
= 1

is maximum on row 0. Now, assume it holds for n. Then, if n+ 1 is even, from Equation (C.3) we have(
n+ 1

bn+1
2
c

)
=

(
n+ 1

dn+1
2
e

)
=

(
n(

n+1
2
− 1
))+

(
n(
n+1
2

))

=

(
n(

n
2
− 1

2

))+

(
n(

n
2

+ 1
2

)) (since n is odd)

=

(
n

bn
2
c

)
+

(
n

dn
2
e

)
,

which shows that is also holds for n+ 1 since (
n

bn
2
c

)
and

(
n

dn
2
e

)
are both maximum on row n. The proof is similar when n+ 1 is odd.

139

CLRS – Chapter C – Counting and Probability Daniel Bastos Moraes

C.1-11 (?) Argue that for any integers n ≥ 0, j ≥ 0, k ≥ 0, and j + k ≤ n,(
n

j + k

)
≤

(
n

j

)(
n− j
k

)
.

Provide both an algebraic proof and an argument based on a method for choosing j+k items out of n. Give an example in which
equality does not hold.

For any integers a ≥ 0, b ≥ 0, and a ≥ b, we have

(a+ b)! = (a+ b) · (a+ b− 1) · (a+ b− 2) · · ·︸ ︷︷ ︸
b times

a!

≥ b · (b− 1) · (b− 2) · · ·︸ ︷︷ ︸
b times

a!

= a! · b!.

Using the above result, we have (
n

j

)(
n− j
k

)
=

n!

j! · (n− j)!
(n− j)!

k! · ((n− j)− k)!

=
n!

j! · k! · ((n− j)− k)!

≥ n!

(j + k)! · (n− (j + k))!

=

(
n

j + k

)
.

The expression on the left is the number of ways to choose an (j+k)-subset of an n-set (which leaves the reamining n−(j+k)
elements). Thus, it is a partition of the original n-set into subsets of cardinalities (j + k) and n − (j + k). The right hand
side has two factors: the first binomial coefficient is the number of ways to choose a j-subset of an n-set (which leaves the
reamining n− j elements); the second is the number of ways to choose a k-subset from the remaining n− j elements. Thus,
it is a partition of the original n-set into subsets of cardinalities j, k, and n − (j + k). Consider now that we choose the
n− (j + k) first, leaving behind the remaining j + k elements. There is precisely one way to choose an (j + k)-subset out of
the remaining j + k elements. On the other hand, when we first choose j and then we choose k, if j < j + k, there are at
least two ways to choose a j-subset from the (j + k)-subset and precisely one way to choose a k-subset from the remaining
k elements. This notion also applies to the algebraic proof, since (j + k)! = j! · k ⇐⇒ j = 0 or k = 0. Also note that
while the left expression does not count any permutation of the (j + k)-subsets (since it normalizes by (j + k)!), the right
expression, despite not counting permutations of each of the subsets indepentently (since it normalizes by j! · k!), it counts
permutations of two subsets together. For instance, let A = {a, b}. There is only one way to choose 2 elements from A,
which is ab. However, there are two ways to choose one element and then another element from A, which are ab and ba.

C.1-12 (?) Use induction on all integers k such that 0 ≤ k ≤ n/2 to prove inequality (C.6), and use equation (C.3) to extend it to all
integers k such that 0 ≤ k ≤ n.

Skipped.

C.1-13 (?) Use Stirling’s approximation to prove that (
2n

n

)
=

22n

√
πn

(1 +O(1/n)).

Skipped.

C.1-14 (?) By differentiating the entropy function H(λ), show that it achieves its maximum value at λ = 1/2. What is H(1/2)?

Skipped.

140

CLRS – Chapter C – Counting and Probability Daniel Bastos Moraes

C.1-15 (?) Show that for any integer n ≥ 0,
n∑
k=0

(
n

k

)
k = n2n−1.

Skipped.

141

CLRS – Chapter C – Counting and Probability Daniel Bastos Moraes

C.2 Probability

C.2-1 Professor Rosencrantz flips a fair coin once. Professor Guildenstern flips a fair coin twice. What is the probability that Professor
Rosencrantz obtains more heads than Professor Guildenstern?

The sample space {H,T}3 has size 23 = 8. Since the only event that satisfies the condition is {HTT}, the probability is 1/8.

C.2-2 Prove the Boole’s inequality : For any finite or countably infinite sequence of events A1, A2, . . . ,

Pr{A1 ∪A2 ∪ · · · } ≤ Pr{A1}+ Pr{A2}+ · · · .

From (C.13) we have
Pr{A1 ∪A2} ≤ Pr{A1}+ Pr{A2},

which implies
Pr{A1 ∪A2 ∪ · · · } = Pr{A1 ∪ (A2 ∪ · · ·)}

≤ Pr{A1}+ Pr{A2 ∪ (A3 ∪ · · ·)}
≤ Pr{A1}+ Pr{A2}+ Pr{A3 ∪ (A4 ∪ · · ·)}
≤ Pr{A1}+ Pr{A2}+ Pr{A3} · · · .

C.2-3 Suppose we shuffle a deck of 10 cards, each bearing a distinct number from 1 to 10, to mix the cards thoroughly. We then remove
three cards, one at a time, from the deck. What is the probability that we select the three cards in sorted (increasing) order?

Let a < b < c denote the number of the three selected cards. There are 3! permutations of {a, b, c} and abc is the only one
which is in sorted order. Thus, the probability is 1/3! = 1/6.

C.2-4 Prove that
Pr{A | B}+ Pr{A | B} = 1.

We have
Pr{B} = Pr{(B ∩A) ∪ (B ∩A)}

= Pr{B ∩A}+ Pr{B ∩A}
= Pr{A}Pr{B | A}+ Pr{A}Pr{B | A}.

Substituting into (C.17) yields

Pr{A | B}+ Pr{A | B} =
Pr{A}Pr{B | A}

Pr{B} +
Pr{A}Pr{B | A}

Pr{B}

=
Pr{A}Pr{B | A}+ Pr{A}Pr{B | A}

Pr{B}

=
Pr{A}Pr{B | A}+ Pr{A}Pr{B | A}
Pr{A}Pr{B | A}+ Pr{A}Pr{B | A}

= 1.

C.2-5 Prove that for any collection of events A1, A2, . . . , An,

Pr{A1 ∩A2 ∩ · · · ∩An} = Pr{A1} · Pr{A2 | A1} · Pr{A3 | A1 ∩A2} · · ·Pr{An | A1 ∩A2 ∩ · · · ∩An−1}.

It is trivially valid for n = 1. As our base case, consider n = 2. From (C.16) we have

Pr{A1 ∩A2} = Pr{A1}Pr{A2 | A1}.

142

CLRS – Chapter C – Counting and Probability Daniel Bastos Moraes

Now assume it holds for n. For n+ 1, we have

Pr{A1 ∩A2 ∩ · · · ∩An+1} = Pr{(A1 ∩A2 ∩ · · · ∩An) ∩An+1}
= Pr{A1 ∩A2 ∩ · · · ∩An}Pr{An+1 | A1 ∩A2 ∩ · · · ∩An}
= Pr{A1} · Pr{A2 | A1} · Pr{A3 | A1 ∩A2} · · ·Pr{An+1 | A1 ∩A2 ∩ · · · ∩An}.

C.2-6 (?) Describe a procedure that takes as input two integers a and b such that 0 < a < b and, using fair coin flips, produces as
output heads with probability a/b and tails with probability (b− a)/b. Give a bound on the expected number of coin flips, which
should be O(1). (Hint: Represent a/b in binary.)

Consider a continuous uniform probability distribution on [0, 1), such that Pr{[0, 1)} = 1. We have

Pr
{[

0,
a

b

)}
=
a

b
,

and

Pr
{[a

b
, 1
)}

= 1− a

b
=
b− a
b

.

With this notion, we can write a procedure that sorts a real number from [0, 1) and return heads if it is lower than a/b or
return tails, otherwise. Using fair coin flips and representing numbers in binary, for each flip we have a new decimal place
from a random number on [0, 1) (consider an “0” if the coin flip is head and “1”, otherwise). Then,

• if the i-th flip is 1 and the i-th decimal place of a/b is 0, the sorted number is larger than a/b and we return tails;

• if the i-th flip is 0 and the i-th decimal place of a/b is 1, the sorted number is smaller than a/b and we return head;

• if the i-th flip and the i-th decimal place are equal, we sort a new decimal place.

Since we do not know how many decimal places a/b has (if periodic, this number is infinite), the above procedure does not
have a maximum number of iterations. However, since for each flip we have a probability of 1/2 of returning head or tails,
the probability of terminating at flip i, for i ≥ 1, is

1/2 · 1/2 · · ·︸ ︷︷ ︸
i times

=
1

2i
.

Thus, by using the notion of expected value and the result (A.8), the expected number of flips is

∞∑
i=1

i · 1

2i
=

∞∑
i=0

i ·
(

1

2

)i
=

1/2

(1− 1/2)2
= 2.

C.2-7 (?) Show how to construct a set of n events that are paiwise independent but such that no subset of k > 2 of them is mutually
independent.

Skipped.

C.2-8 (?) Two events A and B are conditionally independent , given C, if

Pr{A ∩B | C} = Pr{A | C} · Pr{B | C}.

Give a simple but nontrivial example of two events that are not independent but are conditionally independent given a third
event.

Skipped.

143

CLRS – Chapter C – Counting and Probability Daniel Bastos Moraes

C.2-9 (?) You are a contestant in a game show in which a prize is hidden behind one of three curtains. You will win the prize if you select
the correct curtain. After you have picked one curtain but before the curtain is lifted, the emcee lifts one of the other curtains,
knowing that it will reveal an empty stage, and asks if you would like to switch from your current selection to the remaining
curtain. How would your chances change if you switch? (This question is the celebrated Monty Hall problem , named after a
game-show host who often presented contestants with just this dilemma.)

If you never switch, the only way to win is to choose the right curtain at the beginning (before the emcee lifts one of the
others). In this case, your chance to win are 1/3. If you always switch, the only way to loose is to choose the right curtain
at the beginning. In this case, when you choose a curtain without the prize, the emcee will reveal the other empty curtain
and you will therefore change to the correct one. Thus, your chance to win are (1− 1/3) = 2/3.

C.2-10 (?) A prison warden has randomly picked one prisoner among three to go free. The other two will be executed. The guard knows
which one will go free but is forbidden to give any prisoner information regarding his status. Let us call the prisoners X,Y , and
Z. Prisoner X asks the guard privately which of Y or Z will be executed, arguing that since he already knows that at least one of
them must die, the guard won’t be revealing any information about his own status. The guard tells X that Y is to be executed.
Prisoner X feels happier now, since he figures that either he or prisoner Z will go free, which means that his probability of going
free is now 1/2. Is he right, or are his chances still 1/3? Explain.

His chances are still 1/3. Let A be the event of prisoner X going free and B the event that the guard tells X that Y is to
be executed. We have

Pr(A | B) =
Pr(A)Pr(B | A)

Pr(B)
=

1/3 · 1/2
1/2

=
1

3
.

144

CLRS – Chapter C – Counting and Probability Daniel Bastos Moraes

C.3 Discrete random variables

C.3-1 Suppose we roll two ordinary, 6-sided dice. What is the expectation of the sum of the two values showing? What is the expectation
of the maximum of the two values showing?

There are 36 elementary events in the sample space. Since they are ordinary dices, the probability distribution is uniform.

Let X be the random variable of the sum of the two values. The possible outcomes of X are

1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

Thus, we have

E[X] =

12∑
x=2

x · Pr(X = x)

= 2 · 1

36
+ 3 · 2

36
+ 4 · 3

36
+ 5 · 4

36
+ 6 · 5

36
+ 7 · 6

36
+ 8 · 5

36
+ 9 · 4

36
+ 10 · 3

36
+ 11 · 2

36
+ 12 · 1

36

= 7.

Let Y be the random variable of the maximum of the two values. The possible outcomes of Y are

1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 2 3 4 5 6
3 3 3 3 4 5 6
4 4 4 4 4 5 6
5 5 5 5 5 5 6
6 6 6 6 6 6 6

Thus, we have

E[Y] =

6∑
x=1

x · Pr(X = x)

= 1 · 1

36
+ 2 · 3

36
+ 3 · 5

36
+ 4 · 7

36
+ 5 · 9

36
+ 6 · 11

36

≈ 4.47.

C.3-2 An array A[1 . . . n] contains n distinct numbers that are randomly ordered, with each permutation of the n numbers being equally
likely. what is the expectation of the index of the maximum element in the array? What is the expectation of the index of the
minimum element in the array?

Let X and Y be random variables of the index of the maximum and minimum elements, respectivelly. Since each permutation
is equaly likely,

E[X] = E[Y] =

n∑
i=1

i · 1

n
=

1

n

n(n+ 1)

2
=
n+ 1

2
.

145

CLRS – Chapter C – Counting and Probability Daniel Bastos Moraes

C.3-3 A carnival game consists of three dice in a cage. A player can bet a dollar on any of the numbers 1 through 6. The cage is
shaken, and the payoff is as follows. If the player’s number doesn’t appear on any of the dice, he loses his dollar. Otherwise, if his
number appears on exactly k of the three dice, for k = 1, 2, 3, he keeps his dollar and wins k more dollars. What is his expected
gain from playing the carnival game once?

Let X be a random variable of the total gain. The possible outcomes are −1, 1, 2, 3. We have

Pr{X = −1} = (5/6 · 5/6 · 5/6) = 125/216,

Pr{X = 1} = (1/6 · 5/6 · 5/6) · 3 = 75/216,

Pr{X = 2} = (1/6 · 1/6 · 5/6) · 3 = 15/216,

Pr{X = 3} = (1/6 · 1/6 · 1/6) = 1/216.

Thus, we have

E[X] = −1 · 125

216
+ 1 · 75

216
+ 2 · 15

216
+ 3 · 1

216
≈ −0.0787.

C.3-4 Argue that if X and Y are nonnegative random variables, then

E[max(X,Y)] ≤ E[X] + E[Y].

The expectation of nonnegative random variables is a summation of nonnegative numbers. Thus, since E[max(X,Y)] is
either E[X] or E[Y], it must be equal or lower than E[X] + E[Y].

C.3-5 (?) Let X and Y be independent random variables. Prove that f(X) and g(Y) are independent for any functions f and g.

Skipped.

C.3-6 (?) Let X be a nonnegative random variable, and suppose that E[X] is well defined. Prove Markov’s inequality :

Pr{X ≥ t} ≤ E[X]/t

for all t > 0.

We have
E[X] =

∑
x

x · Pr{X = x}

≥
∑
x≥t

x · Pr{X = x}

≥
∑
x≥t

t · Pr{X = x}

= t ·
∑
x≥t

Pr{X = x}

= t · Pr{X ≥ t},
which implies

Pr{X ≥ t} ≤ E[X]/t.

146

CLRS – Chapter C – Counting and Probability Daniel Bastos Moraes

C.3-7 (?) Let S be a sample space, and let X and X ′ be random variables such that X(s) ≥ X ′(s) for all s ∈ S. Prove that for any
real constant t,

Pr{X ≥ t} ≥ Pr{X ′ ≥ t}.

Assuming that the domain of X and X ′ are the sample space S, we have

Pr{X ≥ t} =
∑

s∈S:X(s)≥t

Pr{X = s}

=
∑

s∈S:X′(s)≥t

Pr{X ′ = s}+
∑

s∈S:X(s)≥t>X′(s)

Pr{X ′ = s}

≥
∑

s∈S:X′(s)≥t

Pr{X ′ = s}

= Pr{X ′ ≥ t}.

C.3-8 Which is larger: the expectation of the square of a random variable, or the square of its expectation?

We have from (C.28)
E[X2] = Var[X] + E2[X],

which implies
E[X2] ≥ E2[X],

since both Var[X] and E2[X] are nonnegative numbers.

C.3-9 Show that for any random variable X that takes on only the values 0 and 1, we have

Var[X] = E[X]E[1−X].

We have
E[X] = 0 · Pr{X = 0}+ 1 · Pr{X = 1} = Pr{X = 1},

and
E[1−X] = 1 · Pr{X = 0}+ 0 · Pr{X = 1} = Pr{X = 0},

which implies
Var[X] = E[X2]− E2[X] (since X2 = X)

= E[X]− E[X]E[X]

= E[X](1− E[X])

= E[X](1− Pr{X = 1})
= E[X]Pr{X = 0}
= E[X]E[1−X].

C.3-10 Prove that Var[aX] = a2Var[X] from the definition (C.27) of variance.

Assuming that X is a random variable and a is a constant, from (C.27) and (C.22) we have

Var[aX] = E[(aX − E[aX])2]

= E[(aX − aE[X])2]

= E[a2(X − E[X])2]

= a2E[(X − E[X])2]

= a2Var[X].

147

	The Role of Algorithms in Computing
	Algorithms
	Algorithms as a technology
	Problems

	Getting Started
	Insertion sort
	Analyzing algorithms
	Designing algorithms
	Problems

	Growth of Functions
	Asymptotic notation
	Standard notations and common functions
	Problems

	Divide-and-Conquer
	The maximum-subarray problem
	Strassen's algorithm for matrix multiplication
	The substitution method for solving recurrences
	The recursion-tree method for solving recurrences
	The master method for solving recurrences
	Problems

	Probabilistic Analysis and Randomized Algorithms
	The hiring problem
	Indicator random variables
	Randomized algorithms
	Problems

	Heapsort
	Heaps
	Maintaining the heap property
	Building a heap
	The heapsort algorithm
	Priority queues
	Problems

	Quicksort
	Description of quicksort
	Performance of quicksort
	A randomized version of quicksort
	Analysis of quicksort
	Problems

	Sorting in Linear Time
	Lower bounds for sorting
	Counting sort
	Radix sort
	Bucket sort
	Problems

	Medians and Order Statistics
	Minimum and maximum
	Selection in worst-case linear time
	Selection in worst-case linear time
	Problems

	Elementary Data Structures
	Stacks and queues

	Summations
	Summation formulas and properties
	Bounding summations
	Problems

	Sets, Etc.
	Sets
	Relations
	Functions

	Counting and Probability
	Counting
	Probability
	Discrete random variables

